Shunsuke Chiba
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shunsuke Chiba.
Organic Letters | 2010
Pei Chui Too; Yi-Feng Wang; Shunsuke Chiba
A synthetic method of isoquinolines from aryl ketone O-acyloxime derivatives and internal alkynes has been developed using [Cp*RhCl(2)](2)-NaOAc as the potential catalyst system. The present transformation is carried out by a redox-neutral sequence of C-H vinylation via ortho-rhodation and C-N bond formation of the putative vinyl rhodium intermediate on the oxime nitrogen, where the N-O bond of oxime derivatives could work as an internal oxidant to maintain the catalytic cycle.
Journal of Organic Chemistry | 2011
Pei Chui Too; Sze Hui Chua; Siong Heng Wong; Shunsuke Chiba
A synthetic method for azaheterocycles from aryl ketone O-acetyl oximes and internal alkynes has been developed by using the Cu(OAc)(2)-[Cp*RhCl(2)](2) bimetallic catalytic system. The reactions proceeded with both of anti- and syn-isomers of oximes with a wide scope of substituents. The Cu-Rh bimetallic system could be applied for the synthesis of isoquinolines as well as β-carboline, furo[2.3-c]pyridine, pyrrolo[2,3-c]pyridine, and thieno[2,3-c]pyridine derivatives.
Journal of the American Chemical Society | 2009
Yi-Feng Wang; Shunsuke Chiba
A Mn(III)-mediated divergent synthesis of substituted pyridines and 2-azabicyclo[3.3.1]non-2-en-1-ol derivatives was exploited using readily available vinyl azides and cyclopropanols with a wide range of substituents. In short, the reactions of vinyl azides with monocyclic cyclopropanol provided pyridines in the presence of Mn(acac)(3) (1.7 equiv), whereas those with bicyclic cyclopropanols led to the formation of 2-azabicyclo[3.3.1]non-2-en-1-ol derivatives using a catalytic amount of Mn(acac)(3). These reactions may be initiated by a radical addition of beta-keto radicals, generated by the one-electron oxidation of cyclopropanols, to vinyl azides to give iminyl radicals, which would cyclize with the intramolecular carbonyl groups. In addition, versatile transformations of 2-azabicyclo[3.3.1]non-2-en-1-ol to 2-azabicyclo[3.3.1]nonane or -non-2-nen frameworks were developed.
Journal of the American Chemical Society | 2011
Kah Kah Toh; Yi-Feng Wang; Eileen Pei Jian Ng; Shunsuke Chiba
Synthetic methods for 3-azabicyclo[3.1.0]hex-2-enes and 4-carbonylpyrroles have been developed that use copper-mediated/catalyzed reactions of N-allyl/propargyl enamine carboxylates under an O(2) atmosphere and involve intramolecular cyclopropanation and carbooxygenation, respectively. These methodologies take advantage of orthogonal modes of chemical reactivity of readily available N-allyl/propargyl enamine carboxylates; the complementary pathways can be accessed by slight modification of the reaction conditions.
Journal of the American Chemical Society | 2010
Shunsuke Chiba; Line Zhang; Jian-Yuan Lee
A copper-catalyzed reaction of alpha-azido-N-arylamides was found to proceed under an oxygen atmosphere to afford azaspirocyclohexadienones. The present transformation is carried out by a sequence of denitrogenative formation of iminyl copper species from alpha-azido-N-arylamides and their imino-cupration with an intramolecular benzene ring on the amido nitrogen followed by consecutive formation of C=O bonds. The preliminary investigation revealed that molecular oxygen is a prerequisite for achieving the present catalytic cyclization and that one of the oxygen atoms of O(2) was found to be incorporated into the cyclohexadienone moiety.
Journal of the American Chemical Society | 2011
Yi-Feng Wang; Kah Kah Toh; Eileen Pei Jian Ng; Shunsuke Chiba
Mn(III)-mediated formal [3+3]-annulation has been developed using readily available vinyl azides and cyclopropanols with a wide range of substituents. Vinyl azides were successfully applied as a three-atom unit including one nitrogen to prepare pyridines and δ-lactams by the reactions with monocyclic cyclopropanols as well as to construct 2-azabicyclo[3.3.1] and 2-azabicyclo[4.3.1] frameworks with bicyclic cyclopropanols, bicyclo[3.1.0]hexan-1-ols, and bicyclo[4.1.0]heptan-1-ols. These reactions were initiated by a radical addition of β-carbonyl radicals, generated by the one-electron oxidation of cyclopropanols with Mn(III), to vinyl azides to give iminyl radicals, which cyclized with the intramolecular carbonyl groups. In addition, application of the present methodology to a synthesis of the quaternary indole alkaloid, melinonine-E, was accomplished.
Journal of the American Chemical Society | 2012
Yi-Feng Wang; Xu Zhu; Shunsuke Chiba
A method for the synthesis of bi- and tricyclic amidines has been developed through copper-catalyzed aerobic [3+2]-annulation reaction of N-alkenyl amidines. These cyclic amidines could be converted into mono-benzyl-protected vicinal diamines by the reduction with aluminum hydride.
Organic Letters | 2008
Yi-Feng Wang; Kah Kah Toh; Shunsuke Chiba; Koichi Narasaka
Polysubstituted N-H pyrroles with a wide variety of substituents were prepared from vinyl azides and 1,3-dicarbonyl compounds by using Mn(III) complexes as catalysts.
Organic Letters | 2010
Line Zhang; Gim Yean Ang; Shunsuke Chiba
A copper-catalyzed synthesis of phenanthridine derivatives was developed starting from biaryl-2-carbonitriles and Grignard reagents. The present transformation is carried out by a sequence of nucleophilic addition of Grignard reagents to biaryl-2-carbonitriles to form N-H imines and their Cu-catalyzed C-N bond formation on the aromatic C-H bond, where molecular oxygen is a prerequisite to achieve the catalytic process.
Journal of the American Chemical Society | 2009
Shunsuke Chiba; Yan-Jun Xu; Yi-Feng Wang
A Pd(II)-catalyzed ring expansion-reaction of cyclic 2-azidoalcohol derivatives was found to proceed via an unprecedented C-C bond cleavage-C-N bond formation sequence, providing substituted azaheterocycles.