Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shunsuke Kubota is active.

Publication


Featured researches published by Shunsuke Kubota.


Diabetologia | 2010

Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes

Mariko Sasaki; Yoko Ozawa; Toshihide Kurihara; Shunsuke Kubota; Kenya Yuki; Kousuke Noda; Saori Kobayashi; Susumu Ishida; Kazuo Tsubota

Aims/hypothesisDiabetic retinopathy is a progressive neurodegenerative disease, but the underlying mechanism is still obscure. Here, we focused on oxidative stress in the retina, and analysed its influence on retinal neurodegeneration, using an antioxidant, lutein.MethodsC57BL/6 mice with streptozotocin-induced diabetes were constantly fed either a lutein-supplemented diet or a control diet from the onset of diabetes, and their metabolic data were recorded. In 1-month-diabetic mice, reactive oxygen species (ROS) in the retina were measured using dihydroethidium and visual function was evaluated by electroretinograms. Levels of activated extracellular signal-regulated kinase (ERK), synaptophysin and brain-derived neurotrophic factor (BDNF) were also measured by immunoblotting in the retina of 1-month-diabetic mice. In the retinal sections of 4-month-diabetic mice, histological changes, cleaved caspase-3 and TUNEL staining were analysed.ResultsLutein did not affect the metabolic status of the diabetic mice, but it prevented ROS generation in the retina and the visual impairment induced by diabetes. ERK activation, the subsequent synaptophysin reduction, and the BDNF depletion in the diabetic retina were all prevented by lutein. Later, in 4-month-diabetic mice, a decrease in the thickness of the inner plexiform and nuclear layers, and ganglion cell number, together with increase in cleaved caspase-3- and TUNEL-positive cells, were avoided in the retina of lutein-fed mice.Conclusions/interpretationThe results indicated that local oxidative stress that has a neurodegenerative influence in the diabetic retina is prevented by constant intake of a lutein-supplemented diet. The antioxidant, lutein may be a potential therapeutic approach to protect visual function in diabetes.


Investigative Ophthalmology & Visual Science | 2011

Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model.

Miyuki Kubota; Shigeto Shimmura; Shunsuke Kubota; Hideyuki Miyashita; Naoko Kato; Kousuke Noda; Yoko Ozawa; Tomohiko Usui; Susumu Ishida; Kazuo Umezawa; Toshihide Kurihara; Kazuo Tsubota

PURPOSE To investigate the role of reactive oxygen species (ROS) as the prime initiators of the angiogenic response after alkali injury of the cornea and observe the effects of antioxidants in preventing angiogenesis. METHODS The corneal epithelia of SOD-1-deficient mice or wild-type (WT) mice were removed after application of 0.15 N NaOH to establish the animal model of alkali burn. ROS production was semiquantitatively measured by dihydroethidium (DHE) fluorescence. Angiogenesis was visualized by CD31 immunohistochemistry. The effects of the specific NF-κB inhibitor DHMEQ, the antioxidant N-acetyl-L-cysteine (NAC), and hydrogen (H2) solution were observed. RESULTS ROS production in the cornea was enhanced immediately after alkali injury, as shown by increased DHE fluorescence (P<0.01). NF-κB activation and the upregulation of vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were significantly enhanced (P<0.01), leading to a significantly larger area of angiogenesis. Angiogenesis in SOD-1-/- mice corneas were significantly higher in WT mice (P<0.01), confirming the role of ROS. Pretreatment with the specific NF-κB inhibitor DHMEQ or the antioxidant NAC significantly reduced corneal angiogenesis by downregulating the NF-κB pathway (P<0.01) in both WT and SOD-1-/- mice. Furthermore, we showed that irrigation of the cornea with hydrogen (H2) solution significantly reduced angiogenesis after alkali-burn injury (P<0.01). CONCLUSIONS Immediate antioxidant therapy with H2-enriched irrigation solution is a new potent treatment of angiogenesis in cornea to prevent blindness caused by alkali burn.


American Journal of Pathology | 2010

Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation

Shunsuke Kubota; Toshihide Kurihara; Mari Ebinuma; Miyuki Kubota; Kenya Yuki; Mariko Sasaki; Kousuke Noda; Yoko Ozawa; Yuichi Oike; Susumu Ishida; Kazuo Tsubota

Light damage to the retina accelerates retinal degeneration in human diseases and rodent models. Recently, the polyphenolic phytoalexin resveratrol has been shown to exert various bioactivities in addition to its classical antioxidant property. In the present study, we investigated the effect of resveratrol on light-induced retinal degeneration together with its underlying molecular mechanisms. BALB/c mice with light exposure (5000-lux white light for 3 hours) were orally pretreated with resveratrol at a dose of 50 mg/kg for 5 days. Retinal damage was evaluated by TdT-mediated dUTP nick-end labeling, outer nuclear layer morphometry, and electroretinography. Administration of resveratrol to mice with light exposure led to a significant suppression of light-induced pathological parameters, including TdT-mediated dUTP nick-end labeling-positive retinal cells, outer nuclear layer thinning, and electroretinography changes. To clarify the underlying molecular mechanisms, the nuclear translocation of activator protein-1 subunit c-fos was evaluated by enzyme-linked immunosorbent assay, and the retinal activity of sirtuin 1 was measured by deacetylase fluorometric assay. Retinal activator protein-1 activation, up-regulated following light exposure, was significantly reduced by application of resveratrol. In parallel, retinal sirtuin 1 activity, reduced in animals with light damage, was significantly augmented by resveratrol treatment. Our data suggest the potential use of resveratrol as a therapeutic agent to prevent retinal degeneration related to light damage.


Experimental Diabetes Research | 2011

Neural Degeneration in the Retina of the Streptozotocin-Induced Type 1 Diabetes Model

Yoko Ozawa; Toshihide Kurihara; Mariko Sasaki; Norimitsu Ban; Kenya Yuki; Shunsuke Kubota; Kazuo Tsubota

Diabetic retinopathy, a vision-threatening disease, has been regarded as a vascular disorder. However, impaired oscillatory potentials (OPs) in the electroretinogram (ERG) and visual dysfunction are recorded before severe vascular lesions appear. Here, we review the molecular mechanisms underlying the retinal neural degeneration observed in the streptozotocin-(STZ-) induced type 1 diabetes model. The renin-angiotensin system (RAS) and reactive oxygen species (ROS) both cause OP impairment and reduced levels of synaptophysin, a synaptic vesicle protein for neurotransmitter release, most likely through excessive protein degradation by the ubiquitin-proteasome system. ROS also decrease brain-derived neurotrophic factor (BDNF) and inner retinal neuronal cells. The influence of both RAS and ROS on synaptophysin suggests that RAS-ROS crosstalk occurs in the diabetic retina. Therefore, suppressors of RAS or ROS, such as angiotensin II type 1 receptor blockers or the antioxidant lutein, respectively, are potential candidates for neuroprotective and preventive therapies to improve the visual prognosis.


Investigative Ophthalmology & Visual Science | 2011

Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation.

Shunsuke Kubota; Yoko Ozawa; Toshihide Kurihara; Mariko Sasaki; Kenya Yuki; Seiji Miyake; Kousuke Noda; Susumu Ishida; Kazuo Tsubota

PURPOSE AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. The purpose of the present study was to elucidate the roles of AMPK in the pathogenesis of diabetic retinopathy using the known AMPK activators resveratrol and AICAR (5-aminoimidazole-4-carboxamide ribonucleoside) in a mouse model. METHODS C57BL/6 mice with streptozotocin-induced diabetes were treated with resveratrol orally at 50 mg/kg for 7 days or with AICAR intraperitoneally at 100 mg/kg 24 hours before death. Retinal protein levels of phosphorylated and total AMPK, phosphorylated nuclear factor (NF)-κB p65, intercellular adhesion molecule (ICAM)-1, and vascular endothelial growth factor (VEGF) were evaluated by Western blot analysis or enzyme-linked immunosorbent assay. Retinal activity of sirtuin (SIRT)1 was measured by deacetylase fluorometric assay. Leukocyte adhesion to the retinal vasculature was examined with a concanavalin A lectin perfusion-labeling technique. RESULTS Induction of diabetes in mice led to retinal AMPK dephosphorylation, which was significantly reversed by either resveratrol or AICAR. Either resveratrol or AICAR significantly reversed SIRT1 deactivation and NF-κB phosphorylation, both of which were induced in the diabetic retina. Administration of resveratrol to diabetic mice significantly reduced diabetes-induced retinal leukocyte adhesion, together with retinal expression of ICAM-1 and VEGF. CONCLUSIONS The present findings reveal that diabetes-induced retinal inflammation stems from downregulation of the AMPK pathway, leading subsequently to SIRT1 deactivation and NF-κB activation. The data also suggest the potential use of the AMPK activator resveratrol as a therapeutic agent for diabetic retinopathy.


Nature Communications | 2015

IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis

Rei Nakamura; Abdoulaye Sene; Andrea Santeford; Abdelaziz Gdoura; Shunsuke Kubota; Nicole Zapata; Rajendra S. Apte

Macrophage dysfunction plays a pivotal role during neovascular proliferation in diseases of ageing including cancers, atherosclerosis and blinding eye disease. In the eye, choroidal neovascularization (CNV) causes blindness in patients with age-related macular degeneration (AMD). Here we report that increased IL10, not IL4 or IL13, in senescent eyes activates STAT3 signalling that induces the alternative activation of macrophages and vascular proliferation. Targeted inhibition of both IL10 receptor-mediated signalling and STAT3 activation in macrophages reverses the ageing phenotype. In addition, adoptive transfer of STAT3-deficient macrophages into eyes of old mice significantly reduces the amount of CNV. Systemic and CD163+ eye macrophages obtained from AMD patients also demonstrate STAT3 activation. Our studies demonstrate that impaired SOCS3 feedback leads to permissive IL10/STAT3 signalling that promotes alternative macrophage activation and pathological neovascularization. These findings have significant implications for our understanding of the pathobiology of age-associated diseases and may guide targeted immunotherapy.


Investigative Ophthalmology & Visual Science | 2013

Disruption of Cell-Cell Junctions and Induction of Pathological Cytokines in the Retinal Pigment Epithelium of Light-Exposed Mice

Toshio Narimatsu; Yoko Ozawa; Seiji Miyake; Shunsuke Kubota; Manabu Hirasawa; Norihiro Nagai; Shigeto Shimmura; Kazuo Tsubota

PURPOSE To elucidate the influences of light exposure on the retinal pigment epithelium (RPE) in vivo that may be involved in the pathogenesis of AMD. METHODS Six- to 7-week-old BALB/c mice were exposed to light at 2000 lux for 3 hours. Flat-mount RPE samples were immunostained with anti-ZO-1 antibody for evaluating tight junction, anti-N-cadherin, and anti-β-catenin antibodies for adherens junction, and stained with phalloidin for actin cytoskeleton. The reactive oxygen species (ROS) level was measured using DCFH-DA; Rho-associated coiled-coil forming kinase (ROCK) activity was by ELISA. Cytokine expression was analyzed by real-time RT-PCR and/or ELISA in the RPE-choroid, and macrophage recruitment was by real-time RT-PCR and immunohistochemistry. Either an antioxidant, N-Acetyl-L-cysteine (NAC), or a ROCK inhibitor, Y-27632, were administered to analyze the roles of ROS and ROCK activation, respectively. RESULTS Light exposure disrupted staining patterns of tight junctions, adherens junctions, and actin cytoskeleton in the RPE, where ROS was elevated. However, NAC treatment avoided the RPE changes, reducing ROS. ROCK activity increased after light exposure was suppressed by NAC, and the structural disruptions were suppressed by Y-27632. The levels of MCP-1, CCL11, and IL-6 increased after light exposure were suppressed by NAC. Light-induced MCP-1 and IL-6 were suppressed by Y-27632. Macrophage recruitment after light exposure was also suppressed either by NAC or Y-27632. CONCLUSIONS Light exposure induced ROS and Rho/ROCK activation, which caused disruption of cell-cell junctions (tight junctions and adherens junctions) and actin cytoskeleton, the RPEs barrier structure, and induced AMD-associated pathological changes in the RPE-choroid.


Ophthalmic Research | 2010

Retinal Aging and Sirtuins

Yoko Ozawa; Shunsuke Kubota; Toshio Narimatsu; Kenya Yuki; Takashi Koto; Mariko Sasaki; Kazuo Tsubota

The process of aging involves the accumulating changes in the microenvironment that lead to cell senescence or apoptosis, and subsequent tissue or organ dysfunction. Multiple extrinsic and intrinsic events that cause DNA instability are associated with aging. Cells containing unstable DNA are biologically vulnerable, and if the DNA damage is too great for the cell to repair, it becomes senescent or dies by apoptosis. Thus, the cell’s capacity to repair its DNA determines the progress of aging, at least in part. Here, we focus on the sirtuins, the mammalian homologs of the yeast life-span-extending molecule, Sir2. Among the sirtuin family proteins in mammals, the one most similar to yeast Sir2 is SIRT1, which is involved in multiple pathways, including the repair of DNA double-strand breaks. Although the role of SIRT1 in mammalian longevity is not clear, it is expressed throughout the retina, where it may suppress aging. In fact, a mutant mouse model of retinal degeneration shows an abnormal subcellular localization of SIRT1 protein and accelerated retinal cell apoptosis. Further analyses are required to elucidate the mechanism of DNA damage and repair, including the contributions of the sirtuins, in the aged or diseased retinas, which will help us understand the mechanisms of retinal aging.


PLOS ONE | 2014

SIRT6 Is Required for Normal Retinal Function

Dafne M. Silberman; Kenneth N. Ross; Pablo Sande; Shunsuke Kubota; Sridhar Ramaswamy; Rajendra S. Apte; Raul Mostoslavsky

The retina is one of the major energy consuming tissues within the body. In this context, synaptic transmission between light-excited rod and cone photoreceptors and downstream ON-bipolar neurons is a highly demanding energy consuming process. Sirtuin 6 (SIRT6), a NAD-dependent deacylase, plays a key role in regulating glucose metabolism. In this study, we demonstrate that SIRT6 is highly expressed in the retina, controlling levels of histone H3K9 and H3K56 acetylation. Notably, despite apparent normal histology, SIRT6 deficiency caused major retinal transmission defects concomitant to changes in expression of glycolytic genes and glutamate receptors, as well as elevated levels of apoptosis in inner retina cells. Our results identify SIRT6 as a critical modulator of retinal function, likely through its effects on chromatin.


The Journal of Neuroscience | 2014

Expression of Nampt in Hippocampal and Cortical Excitatory Neurons Is Critical for Cognitive Function

Liana Roberts Stein; David F. Wozniak; Joshua T. Dearborn; Shunsuke Kubota; Rajendra S. Apte; Yukitoshi Izumi; Charles F. Zorumski; Shin-ichiro Imai

Nicotinamide adenine dinucleotide (NAD+) is an enzyme cofactor or cosubstrate in many essential biological pathways. To date, the primary source of neuronal NAD+ has been unclear. NAD+ can be synthesized from several different precursors, among which nicotinamide is the substrate predominantly used in mammals. The rate-limiting step in the NAD+ biosynthetic pathway from nicotinamide is performed by nicotinamide phosphoribosyltransferase (Nampt). Here, we tested the hypothesis that neurons use intracellular Nampt-mediated NAD+ biosynthesis by generating and evaluating mice lacking Nampt in forebrain excitatory neurons (CaMKIIαNampt−/− mice). CaMKIIαNampt−/− mice showed hippocampal and cortical atrophy, astrogliosis, microgliosis, and abnormal CA1 dendritic morphology by 2–3 months of age. Importantly, these histological changes occurred with altered intrahippocampal connectivity and abnormal behavior; including hyperactivity, some defects in motor skills, memory impairment, and reduced anxiety, but in the absence of impaired sensory processes or long-term potentiation of the Schaffer collateral pathway. These results clearly demonstrate that forebrain excitatory neurons mainly use intracellular Nampt-mediated NAD+ biosynthesis to mediate their survival and function. Studying this particular NAD+ biosynthetic pathway in these neurons provides critical insight into their vulnerability to pathophysiological stimuli and the development of therapeutic and preventive interventions for their preservation.

Collaboration


Dive into the Shunsuke Kubota's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge