Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shunsuke Sakai is active.

Publication


Featured researches published by Shunsuke Sakai.


Journal of Immunology | 2012

Cutting Edge: Nitric Oxide Inhibits the NLRP3 Inflammasome

Eduardo Hernandez-Cuellar; Kohsuke Tsuchiya; Hideki Hara; Rendong Fang; Shunsuke Sakai; Ikuo Kawamura; Shizuo Akira; Masao Mitsuyama

Although the NLRP3 inflammasome plays a pivotal role in host defense, its uncontrolled activation is associated with inflammatory disorders, suggesting that regulation of the inflammasome is important to prevent detrimental effects. Type I IFNs and long-term LPS stimulation were shown to negatively regulate NLRP3 activation. In this study, we found that endogenous NO is involved in the regulation of NLRP3 inflammasome activation by either IFN-β pretreatment or long-term LPS stimulation. Furthermore, S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, markedly inhibited NLRP3 inflammasome activation, whereas the AIM2 and NLRC4 inflammasomes were only partially inhibited by SNAP. An increase in mitochondrial reactive oxygen species induced by ATP was only modestly affected by SNAP treatment. Interestingly, S-nitrosylation of NLRP3 was detected in macrophages treated with SNAP, and this modification may account for the NO-mediated mechanism controlling inflammasome activation. Taken together, these results revealed a novel role for NO in regulating the NLRP3 inflammasome.


Journal of Immunology | 2011

Critical Roles of ASC Inflammasomes in Caspase-1 Activation and Host Innate Resistance to Streptococcus pneumoniae Infection

Rendong Fang; Kohsuke Tsuchiya; Ikuo Kawamura; Yanna Shen; Hideki Hara; Shunsuke Sakai; Takeshi Yamamoto; Teresa Fernandes-Alnemri; Ruili Yang; Eduardo Hernandez-Cuellar; Sita R. Dewamitta; Yanting Xu; Huixin Qu; Emad S. Alnemri; Masao Mitsuyama

Streptococcus pneumoniae is a Gram-positive, extracellular bacterium that is responsible for significant mortality and morbidity worldwide. Pneumolysin (PLY), a cytolysin produced by all clinical isolates of the pneumococcus, is one of the most important virulence factors of this pathogen. We have previously reported that PLY is an essential factor for activation of caspase-1 and consequent secretion of IL-1β and IL-18 in macrophages infected with S. pneumoniae. However, the host molecular factors involved in caspase-1 activation are still unclear. To further elucidate the mechanism of caspase-1 activation in macrophages infected with S. pneumoniae, we examined the involvement of inflammasomes in inducing this cellular response. Our study revealed that apoptosis-associated specklike protein containing a caspase recruitment domain (ASC), an adaptor protein for inflammasome receptors such as nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2), is essentially required for the induction of caspase-1 activation by S. pneumoniae. Caspase-1 activation was partially impaired in NLRP3−/− macrophages, whereas knockdown and knockout of AIM2 resulted in a clear decrease in caspase-1 activation in response to S. pneumoniae. These results suggest that ASC inflammasomes, including AIM2 and NLRP3, are critical for caspase-1 activation induced by S. pneumoniae. Furthermore, ASC−/− mice were more susceptible than wild-type mice to S. pneumoniae, with impaired secretion of IL-1β and IL-18 into the bronchoalveolar lavage after intranasal infection, suggesting that ASC inflammasomes contribute to the protection of host from infection with PLY-producing S. pneumoniae.


Infection and Immunity | 2010

Toll-like receptor 2- and MyD88-dependent phosphatidylinositol 3-kinase and Rac1 activation facilitates the phagocytosis of Listeria monocytogenes by murine macrophages.

Yanna Shen; Ikuo Kawamura; Takamasa Nomura; Kohsuke Tsuchiya; Hideki Hara; Sita R. Dewamitta; Shunsuke Sakai; Huixin Qu; Sylvia Daim; Takeshi Yamamoto; Masao Mitsuyama

ABSTRACT Toll-like receptors (TLRs) play a key role in the innate immune response by sensing bacterial ligands. The mechanisms involved in the TLR-mediated cytokine response are well established; however, the possible contribution of TLR-dependent recognition of bacteria to macrophage phagocytosis remains unclear. Listeria monocytogenes is an intracellular, parasitic, Gram-positive bacterium recognized mainly by TLR2. In this study, we investigated whether TLR2-dependent signaling is involved in the phagocytosis of L. monocytogenes by macrophages. We found no difference in the number of L. monocytogenes cells associating with wild-type (WT) and TLR2−/− macrophages 1 h after infection. However, the number of L. monocytogenes cells phagocytosed in TLR2−/− and MyD88−/− macrophages was significantly lower than that of WT macrophages. In addition, lipopolysaccharide (LPS) treatment restored impaired phagocytic activity of TLR2−/− macrophages but did not enhance the activity of MyD88−/− macrophages. The efficiency of phagocytosis was suppressed by inhibitors of phosphatidylinositol 3-kinase (PI3K) and the small Rho GTPases but not by cycloheximide. Moreover, functional activation of PI3K and Rac1 was impaired in TLR2−/− and MyD88−/− macrophages. In an in vivo infection model, we found significantly lower numbers of L. monocytogenes cells phagocytosed in peritoneal macrophages of TLR2−/− and MyD88−/− mice after intraperitoneal infection. Moreover, a lower number of bacteria were detected in the spleens of TLR2−/− mice 1 day after intravenous infection than in WT mice. These results clearly indicated that TLR2-MyD88-dependent signaling enhances the basal level of phagocytosis of L. monocytogenes by macrophages through activation of PI3K and Rac1, not by synthesis of proinflammatory cytokines or expression of phagocytic receptors.


Infection and Immunity | 2009

The RD1 Locus in the Mycobacterium tuberculosis Genome Contributes to Activation of Caspase-1 via Induction of Potassium Ion Efflux in Infected Macrophages

Takeshi Kurenuma; Ikuo Kawamura; Hideki Hara; Ryosuke Uchiyama; Sylvia Daim; Sita R. Dewamitta; Shunsuke Sakai; Kohsuke Tsuchiya; Takamasa Nomura; Masao Mitsuyama

ABSTRACT A genomic locus called “region of difference 1” (RD1) in Mycobacterium tuberculosis has been shown to contribute to the generation of host protective immunity as well as to the virulence of the bacterium. To gain insight into the molecular mechanism, we investigated the difference in the cytokine-inducing ability between H37Rv and a mutant strain deficient for RD1 (ΔRD1). We found that RD1 is implicated in the production of caspase-1-dependent cytokines, interleukin-18 (IL-18) and IL-1β, from infected macrophages. The expression of these cytokines was similarly induced after infection with H37Rv and ΔRD1. However, the activation of caspase-1 was observed only in H37Rv-infected macrophages. The cytokine production and caspase-1 activation were induced independently of type I interferon receptor signaling events. We also found that the activation of caspase-1 was markedly inhibited with increasing concentrations of extracellular KCl. Furthermore, the production of IL-18 and IL-1β and caspase-1 activation were induced independently of a P2X7 purinergic receptor, and the inability of ΔRD1 in caspase-1 activation was compensated for by nigericin, an agent inducing the potassium ion efflux. Based on these results, we concluded that RD1 participates in caspase-1-dependent cytokine production via induction of the potassium ion efflux in infected macrophages.


Infection and Immunity | 2012

Listeria monocytogenes Strain-Specific Impairment of the TetR Regulator Underlies the Drastic Increase in Cyclic di-AMP Secretion and Beta Interferon-Inducing Ability

Takeshi Yamamoto; Hideki Hara; Kohsuke Tsuchiya; Shunsuke Sakai; Rendong Fang; Motohiro Matsuura; Takamasa Nomura; Fumihiko Sato; Masao Mitsuyama; Ikuo Kawamura

ABSTRACT Among a number of laboratory strains of Listeria monocytogenes used in experimental infection, strain LO28 is highly capable of inducing robust beta interferon (IFN-β) production in infected macrophages. In this study, we investigated the molecular mechanism of the IFN-β-inducing ability of LO28 by comparing it with that of strain EGD, a low-IFN-β-inducing strain. It was found that LO28 secretes a large amount of IFN-β-inducing factor, which turned out to be cyclic di-AMP. The secretion of cyclic di-AMP was dependent on MdrT, a multidrug resistance transporter, and LO28 exhibited a very high level of mdrT expression. The introduction of a null mutation into mdrT abolished the ability of LO28 to induce IFN-β production. Examination of genes responsible for the regulation of mdrT expression revealed a spontaneous 188-bp deletion in tetR of LO28. By constructing recombinant strains of LO28 and EGD in which tetR from each strain was replaced, it was confirmed that the distinct ability of LO28 is attributable mostly to tetR mutation. We concluded that the strong IFN-β-inducing ability of LO28 is due to a genetic defect in tetR resulting in the overexpression of mdrT and a concomitant increase in the secretion of cyclic di-AMP through MdrT.


Infection and Immunity | 2014

Type I Interferon Signaling Regulates Activation of the Absent in Melanoma 2 Inflammasome during Streptococcus pneumoniae Infection

Rendong Fang; Hideki Hara; Shunsuke Sakai; Eduardo Hernandez-Cuellar; Masao Mitsuyama; Ikuo Kawamura; Kohsuke Tsuchiya

ABSTRACT Streptococcus pneumoniae, a Gram-positive bacterial pathogen, causes pneumonia, meningitis, and septicemia. Innate immune responses are critical for the control and pathology of pneumococcal infections. It has been demonstrated that S. pneumoniae induces the production of type I interferons (IFNs) by host cells and that type I IFNs regulate resistance and chemokine responses to S. pneumoniae infection in an autocrine/paracrine manner. In this study, we examined the effects of type I IFNs on macrophage proinflammatory cytokine production in response to S. pneumoniae. The production of interleukin-18 (IL-18), but not other cytokines tested, was significantly decreased by the absence or blockade of the IFN-α/β receptor, suggesting that type I IFN signaling is necessary for IL-18 production. Type I IFN signaling was also required for S. pneumoniae-induced activation of caspase-1, a cysteine protease that plays a central role in maturation and secretion of IL-18. Earlier studies proposed that the AIM2 and NLRP3 inflammasomes mediate caspase-1 activation in response to S. pneumoniae. From our results, the AIM2 inflammasome rather than the NLRP3 inflammasome seemed to require type I IFN signaling for its optimal activation. Consistently, AIM2, but not NLRP3, was upregulated in S. pneumoniae-infected macrophages in a manner dependent on the IFN-α/β receptor. Furthermore, type I IFN signaling was found to contribute to IL-18 production in pneumococcal pneumonia in vivo. Taken together, these results suggest that type I IFNs regulate S. pneumoniae-induced activation of the AIM2 inflammasome by upregulating AIM2 expression. This study revealed a novel role for type I IFNs in innate responses to S. pneumoniae.


International Immunology | 2010

PD-1–PD-L1 pathway impairs Th1 immune response in the late stage of infection with Mycobacterium bovis bacillus Calmette–Guérin

Shunsuke Sakai; Ikuo Kawamura; Taku Okazaki; Kohsuke Tsuchiya; Ryousuke Uchiyama; Masao Mitsuyama

A major concern still prevails as to the reason why various mycobacteria are able to persist within infected host in which protective immunity is generated. To address this question, we monitored the generation of protective T cells during infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG). CD4(+) T cells obtained 3 weeks after infection conferred protection against Mycobacterium tuberculosis challenge and produced IFN-γ and tumor necrosis factor (TNF)-α upon antigen stimulation. However, these abilities were decreased after 6 weeks of infection even though BCG was not thoroughly eliminated from the host. We analyzed the expression of ligands for the CD28/CTLA-4 family receptors on antigen-presenting cells and found that the expression of PD-L1, a ligand for programmed cell death-1 (PD-1), was up-regulated later than 3 weeks of infection. We also found that bacterial numbers in the spleen of PD-1-deficient mice were significantly reduced compared with wild-type mice at 6 and 12 weeks after BCG infection. Furthermore, CD4(+) T cells of PD-1-deficient mice showed a higher ability to confer protection and produce IFN-γ and TNF-α even at 12 weeks after infection. These results indicate that the PD-1-PD-L1 pathway impairs T(h)1 immunity in the late stage of BCG infection, thereby facilitating the bacterial persistence in the host.


Journal of Medical Microbiology | 2011

Expression of the Mycobacterium tuberculosis PPE37 protein in Mycobacterium smegmatis induces low tumour necrosis factor alpha and interleukin 6 production in murine macrophages

Sylvia Daim; Ikuo Kawamura; Kohsuke Tsuchiya; Hideki Hara; Takeshi Kurenuma; Yanna Shen; Sita R. Dewamitta; Shunsuke Sakai; Takamasa Nomura; Huixin Qu; Masao Mitsuyama

PPE37 is a member of the Mycobacterium tuberculosis proline-proline-glutamic acid (PPE) multigene family. Its expression is upregulated in bacteria that are phagocytosed by macrophages and is enhanced even more in bacteria isolated from the lungs of infected mice. This raises the possibility that PPE37 may play a role in the virulence of M. tuberculosis and led to this investigation of the function of PPE37. Recombinant bacterial strains, one expressing the M. tuberculosis PPE37 protein (Ms_ppe37) and another harbouring the vector alone (Ms_vec) were generated from the non-pathogenic Mycobacterium smegmatis. These bacterial strains were used to infect peritoneal exudate and bone marrow-derived macrophages. It was found that, despite the comparable intracellular survival between the two recombinant M. smegmatis strains, Ms_ppe37 induced a significantly lower level of tumour necrosis factor alpha and interleukin 6 in the infected macrophages compared with Ms_vec. Western blot analyses revealed that the activation levels of nuclear factor kappa B, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase and MAPK/p38 were lower in macrophages infected with Ms_ppe37 than in macrophages infected with Ms_vec. These results suggest that PPE37 may have a potential role in interfering with the pro-inflammatory cytokine response of infected macrophages.


Infection and Immunity | 2010

Listeriolysin O-Dependent Bacterial Entry into the Cytoplasm Is Required for Calpain Activation and Interleukin-1α Secretion in Macrophages Infected with Listeria monocytogenes

Sita R. Dewamitta; Takamasa Nomura; Ikuo Kawamura; Hideki Hara; Kohsuke Tsuchiya; Takeshi Kurenuma; Yanna Shen; Sylvia Daim; Takeshi Yamamoto; Huixin Qu; Shunsuke Sakai; Yanting Xu; Masao Mitsuyama

ABSTRACT Listeriolysin O (LLO), an hly-encoded cytolysin of Listeria monocytogenes, plays an essential role in the entry of L. monocytogenes into the host cell cytoplasm. L. monocytogenes-infected macrophages produce various proinflammatory cytokines, including interleukin-1α (IL-1α), that contribute to the host immune response. In this study, we have examined IL-1α production in macrophages infected with wild-type L. monocytogenes or a nonescaping mutant strain deficient for LLO (Δhly). Expression of IL-1α mRNA and accumulation of pro-IL-1α in the cytoplasm were induced by both strains. In contrast, the secretion of the mature form of IL-1α from infected macrophages was observed in infection with wild-type L. monocytogenes but not with the Δhly mutant. A recovery of the ability to induce IL-1α secretion was shown in a mutant strain complemented with the hly gene. The Toll-like receptor (TLR)/MyD88 signaling pathway was exclusively required for the expression of pro-IL-1α, independently of LLO-mediated cytoplasmic entry of L. monocytogenes. The LLO-dependent secretion of mature IL-1α was abolished by addition of calcium chelators, and only LLO-producing L. monocytogenes strains were able to induce elevation of the intracellular calcium level in infected macrophages. A calcium-dependent protease, calpain, was implicated in the maturation and secretion of IL-1α induced by LLO-producing L. monocytogenes strains based on the effect of calpain inhibitor. Functional activation of calpain was detected in macrophages infected with LLO-producing L. monocytogenes strains but not with a mutant strain lacking LLO. These results clearly indicated that LLO-mediated cytoplasmic entry of bacteria could induce the activation of intracellular calcium signaling, which is essential for maturation and secretion of IL-1α in macrophages during L. monocytogenes infection through activation of a calcium-dependent calpain protease. In addition, recombinant LLO, when added to macrophages infected with the Δhly strain, could induce calcium influx and IL-1α secretion at doses exhibiting cytolytic activity, suggesting that LLO produced by intracellular L. monocytogenes may be implicated in induction of calcium influx through pore formation.


Infection and Immunity | 2007

Involvement of Caspase-9 in the Inhibition of Necrosis of RAW 264 Cells Infected with Mycobacterium tuberculosis

Ryosuke Uchiyama; Ikuo Kawamura; Takao Fujimura; Michiko Kawanishi; Kohsuke Tsuchiya; Takanari Tominaga; Taijin Kaku; Yutaka Fukasawa; Shunsuke Sakai; Takamasa Nomura; Masao Mitsuyama

ABSTRACT In order to know how caspases contribute to the intracellular fate of Mycobacterium tuberculosis and host cell death in the infected macrophages, we examined the effect of benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethane (z-VAD-fmk), a broad-spectrum caspase inhibitor, on the growth of M. tuberculosis H37Rv in RAW 264 cells. In the cells treated with z-VAD-fmk, activation of caspase-8, caspase-3/7, and caspase-9 was clearly suppressed, and DNA fragmentation of the infected cells was also reduced. Under this experimental condition, it was found that the treatment markedly inhibited bacterial growth inside macrophages. The infected cells appeared to undergo cell death of the necrosis type in the presence of z-VAD-fmk. We further found that z-VAD-fmk treatment resulted in the generation of intracellular reactive oxygen species (ROS) in the infected cells. By addition of a scavenger of ROS, the host cell necrosis was inhibited and the intracellular growth of H37Rv was significantly restored. Among inhibitors specific for each caspase, only the caspase-9-specific inhibitor enhanced the generation of ROS and induced necrosis of the infected cells. Furthermore, we found that severe necrosis was induced by infection with H37Rv but not H37Ra in the presence of z-VAD-fmk. Caspase-9 activation was also detected in H37Rv-infected cells, but H37Ra never induced such caspase-9 activation. These results indicated that caspase-9, which was activated by infection with virulent M. tuberculosis, contributed to the inhibition of necrosis of the infected host cells, presumably through suppression of intracellular ROS generation.

Collaboration


Dive into the Shunsuke Sakai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge