Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shunsuke Yamane is active.

Publication


Featured researches published by Shunsuke Yamane.


Diabetes | 2014

Chronic Reduction of GIP Secretion Alleviates Obesity and Insulin Resistance Under High-Fat Diet Conditions.

Daniela Nasteska; Norio Harada; Kazuyo Suzuki; Shunsuke Yamane; Akihiro Hamasaki; Erina Joo; Kanako Iwasaki; Kimitaka Shibue; Takanari Harada; Nobuya Inagaki

Gastric inhibitory polypeptide (GIP) exhibits potent insulinotropic effects on β-cells and anabolic effects on bone formation and fat accumulation. We explored the impact of reduced GIP levels in vivo on glucose homeostasis, bone formation, and fat accumulation in a novel GIP-GFP knock-in (KI) mouse. We generated GIP-GFP KI mice with a truncated prepro-GIP gene. The phenotype was assessed in heterozygous and homozygous states in mice on a control fat diet and a high-fat diet (HFD) in vivo and in vitro. Heterozygous GIP-GFP KI mice (GIP-reduced mice [GIPgfp/+]) exhibited reduced GIP secretion; in the homozygous state (GIP-lacking mice [GIPgfp/gfp]), GIP secretion was undetectable. When fed standard chow, GIPgfp/+ and GIPgfp/gfp mice showed mild glucose intolerance with decreased insulin levels; bone volume was decreased in GIPgfp/gfp mice and preserved in GIPgfp/+ mice. Under an HFD, glucose levels during an oral glucose tolerance test were similar in wild-type, GIPgfp/+, and GIPgfp/gfp mice, while insulin secretion remained lower. GIPgfp/+ and GIPgfp/gfp mice showed reduced obesity and reduced insulin resistance, accompanied by higher fat oxidation and energy expenditure. GIP-reduced mice demonstrate that partial reduction of GIP does not extensively alter glucose tolerance, but it alleviates obesity and lessens the degree of insulin resistance under HFD conditions, suggesting a potential therapeutic value.


Endocrinology | 2015

Free Fatty Acid Receptor GPR120 Is Highly Expressed in Enteroendocrine K Cells of the Upper Small Intestine and Has a Critical Role in GIP Secretion After Fat Ingestion

Kanako Iwasaki; Norio Harada; Kazuki Sasaki; Shunsuke Yamane; Keiko Iida; Kazuyo Suzuki; Akihiro Hamasaki; Daniela Nasteska; Kimitaka Shibue; Erina Joo; Takanari Harada; Toshihiro Hashimoto; Yoshinori Asakawa; Akira Hirasawa; Nobuya Inagaki

Gastric inhibitory polypeptide (GIP) is an incretin secreted from enteroendocrine K cells in response to meal ingestion. Recently free fatty acid receptor G protein-coupled receptor (GPR) 120 was identified as a lipid sensor involved in glucagon-like peptide-1 secretion. However, Gpr 120 gene expression and its role in K cells remain unclear, partly due to difficulties in separation of K cells from other intestinal epithelial cells. In this study, we purified K cells using GIP-green fluorescent protein (GFP) knock-in mice, in which K cells can be visualized by GFP fluorescence. GFP-positive cells (K cells) were observed in the small intestine but not in the stomach and colon. K cell number and GIP content in K cells were significantly higher in the upper small intestine than those in the lower small intestine. We also examined the expression levels of several free fatty acid receptors in K cells. Among free fatty acid receptors, GPR120 was highly expressed in the K cells of the upper small intestine compared with the lower small intestine. To clarify the role of GPR120 on K cells in vivo, we used GPR120-deficient mice (GPR120(-/-)). GPR120(-/-) exhibited significantly lower GIP secretion (75% reduction, P < .01) after lard oil ingestion compared with that in wild-type mice. Consistently, pharmacological inhibition of GPR120 with grifolic acid methyl ether in wild-type mice significantly attenuated lard oil-induced GIP secretion. In conclusion, GPR120 is expressed abundantly in K cells of the upper small intestine and plays a critical role in lipid-induced GIP secretion.


Journal of Biological Chemistry | 2013

Transcriptional Regulatory Factor X6 (Rfx6) Increases Gastric Inhibitory Polypeptide (GIP) Expression in Enteroendocrine K-cells and Is Involved in GIP Hypersecretion in High Fat Diet-induced Obesity

Kazuyo Suzuki; Norio Harada; Shunsuke Yamane; Yasuhiko Nakamura; Kazuki Sasaki; Daniela Nasteska; Erina Joo; Kimitaka Shibue; Takanari Harada; Akihiro Hamasaki; Kentaro Toyoda; Kazuaki Nagashima; Nobuya Inagaki

Background: Gastric inhibitory polypeptide (GIP) secreted from enteroendocrine K-cells potentiates insulin secretion and induces energy accumulation into adipose tissue. Results: Transcriptional Rfx6 is expressed in K-cells and increases GIP expression. Rfx6 expression is up-regulated in K-cells of obese mice. Conclusion: Rfx6 plays critical roles in GIP expression and hypersecretion in obesity. Significance: Gene analysis of K-cells isolated from GIP-GFP knock-in mice enabled identification of Rfx6. Gastric inhibitory polypeptide (GIP) is an incretin released from enteroendocrine K-cells in response to nutrient ingestion. GIP potentiates glucose-stimulated insulin secretion and induces energy accumulation into adipose tissue, resulting in obesity. Plasma GIP levels are reported to be increased in the obese state. However, the molecular mechanisms of GIP secretion and high fat diet (HFD)-induced GIP hypersecretion remain unclear, primarily due to difficulties in separating K-cells from other intestinal epithelial cells in vivo. In this study, GIP-GFP knock-in mice that enable us to visualize K-cells by enhanced GFP were established. Microarray analysis of isolated K-cells from these mice revealed that transcriptional regulatory factor X6 (Rfx6) is expressed exclusively in K-cells. In vitro experiments using the mouse intestinal cell line STC-1 showed that knockdown of Rfx6 decreased mRNA expression, cellular content, and secretion of GIP. Rfx6 bound to the region in the gip promoter that regulates gip promoter activity, and overexpression of Rfx6 increased GIP mRNA expression. HFD induced obesity and GIP hypersecretion in GIP-GFP heterozygous mice in vivo. Immunohistochemical and flow cytometry analysis showed no significant difference in K-cell number between control fat diet-fed (CFD) and HFD-fed mice. However, GIP content in the upper small intestine and GIP mRNA expression in K-cells were significantly increased in HFD-fed mice compared with those in CFD-fed mice. Furthermore, expression levels of Rfx6 mRNA were increased in K-cells of HFD-fed mice. These results suggest that Rfx6 increases GIP expression and content in K-cells and is involved in GIP hypersecretion in HFD-induced obesity.


Biochemical and Biophysical Research Communications | 2008

GLP-1 receptor signaling protects pancreatic beta cells in intraportal islet transplant by inhibiting apoptosis

Kentaro Toyoda; Teru Okitsu; Shunsuke Yamane; Taeko Uonaga; Xibao Liu; Norio Harada; Shinji Uemoto; Yutaka Seino; Nobuya Inagaki

To clarify the cytoprotective effect of glucagon-like peptide-1 receptor (GLP-1R) signaling in conditions of glucose toxicity in vivo, we performed murine isogenic islet transplantation with and without exendin-4 treatment. When a suboptimal number of islets (150) were transplanted into streptozotocin-induced diabetic mice, exendin-4 treatment contributed to the restoration of normoglycemia. When 50 islets expressing enhanced green fluorescent protein (EGFP) were transplanted, exendin-4 treatment reversed loss of both the number and mass of islet grafts one and 3 days after transplantation. TUNEL staining revealed that exendin-4 treatment reduced the number of apoptotic beta cells during the early posttransplant phase, indicating that GLP-1R signaling exerts its cytoprotective effect on pancreatic beta cells by inhibiting their apoptosis. This beneficial effect might be used both to ameliorate type 2 diabetes and to improve engraftment rates in clinical islet transplantation.


Journal of Diabetes and Its Complications | 2015

Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients

Daisuke Yabe; Akira Kuroe; Koin Watanabe; Masahiro Iwasaki; Akihiro Hamasaki; Yoshiyuki Hamamoto; Norio Harada; Shunsuke Yamane; Soushou Lee; Kenta Murotani; Carolyn F. Deacon; Jens J. Holst; Tsutomu Hirano; Nobuya Inagaki; Takeshi Kurose; Yutaka Seino

AIMS Hypersecretion of glucagon and reduced insulin secretion both contribute to hyperglycemia in type 2 diabetes (T2DM). However, the relative contributions of impaired glucagon and insulin secretions in glucose excursions at the various stages of T2DM development remain to be determined. METHODS The responses of glucagon and insulin as well as those of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were examined before and after ingestion of glucose or mixed meal in Japanese subjects with normal or impaired glucose tolerance (NGT and IGT) and in non-obese, untreated T2DM of short duration. RESULTS In OGTT, T2DM showed a rise in glucagon at 0-30 min, unlike NGT and IGT, along with reduced insulin. In MTT, all three groups showed a rise in glucagon at 0-30 min, with that in T2DM being highest, while T2DM showed a significant reduction in insulin. Linear regression analyses revealed that glucose area under the curve (AUC)0-120 min was associated with glucagon-AUC0-30 min and insulin-AUC0-30 min in both OGTT and MTT. Total and biologically intact GIP and GLP-1 levels were similar among the three groups. CONCLUSIONS Disordered early phase insulin and glucagon secretions but not incretin secretion are involved in hyperglycemia after ingestion of nutrients in T2DM of even a short duration.


Journal of Diabetes Investigation | 2012

Effects of glucose and meal ingestion on incretin secretion in Japanese subjects with normal glucose tolerance

Shunsuke Yamane; Norio Harada; Akihiro Hamasaki; Atsushi Muraoka; Erina Joo; Kazuyo Suzuki; Daniela Nasteska; Daisuke Tanaka; Masahito Ogura; Shin-ichi Harashima; Nobuya Inagaki

Aims/Introduction:  Gastric inhibitory polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are the major incretins; their secretion after various nutrient loads are well‐evaluated in Caucasians. However, little is known of the relationship between incretin secretion and differing nutritional loading in Japanese subjects. In the present study, we evaluated GIP and GLP‐1 secretion in Japanese subjects with normal glucose tolerance (NGT) after glucose loading (75 g glucose and 17 g glucose) and meal ingestion.


Islets | 2010

FGF-21 enhances islet engraftment in mouse syngeneic islet transplantation model.

Taeko Uonaga; Kentaro Toyoda; Teru Okitsu; Xiaotong Zhuang; Shunsuke Yamane; Shinji Uemoto; Nobuya Inagaki

To clarify the effect of fibroblast growth factor-21 (FGF-21) on islet transplantation, a suboptimal number of islets were transplanted into streptozotocin (STZ)-induced diabetic mice with or without FGF-21 treatment. Three-day treatment with FGF-21 contributed to restoration of normoglycemia by suppressing islet graft loss. The FGF-21-treated mice showed lower glycemic levels despite similar insulin content in the graft than that in untreated mice on day 3, indicating that FGF-21 not only has a cytoprotective effect but also decreases β-cell load by increasing insulin sensitivity. These results suggest that FGF-21 may be useful as a treatment to improve islet engraftment rates in clinical islet transplantation.


Journal of Diabetes Investigation | 2011

Plasma gastric inhibitory polypeptide and glucagon‐like peptide‐1 levels after glucose loading are associated with different factors in Japanese subjects

Norio Harada; Akihiro Hamasaki; Shunsuke Yamane; Atsushi Muraoka; Erina Joo; Kazuyo Fujita; Nobuya Inagaki

Aims/Introduction:  Gastric inhibitory polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are major incretins that potentiate insulin secretion from pancreatic β‐cells. The factors responsible for incretin secretion have been reported in Caucasian subjects, but have not been thoroughly evaluated in Japanese subjects. We evaluated the factors associated with incretin secretion during oral glucose tolerance test (OGTT) in Japanese subjects with normal glucose tolerance (NGT).


American Journal of Physiology-endocrinology and Metabolism | 2015

Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion

Kimitaka Shibue; Shunsuke Yamane; Norio Harada; Akihiro Hamasaki; Kazuyo Suzuki; Erina Joo; Kanako Iwasaki; Daniela Nasteska; Takanari Harada; Yoshitaka Hayashi; Yasuhiro Adachi; Yuji Owada; Ryoichi Takayanagi; Nobuya Inagaki

Gastric inhibitory polypeptide (GIP) is an incretin released from enteroendocrine K cells in response to nutrient intake, especially fat. GIP is one of the contributing factors inducing fat accumulation that results in obesity. A recent study shows that fatty acid-binding protein 5 (FABP5) is expressed in murine K cells and is involved in fat-induced GIP secretion. We investigated the mechanism of fat-induced GIP secretion and the impact of FABP5-related GIP response on diet-induced obesity (DIO). Single oral administration of glucose and fat resulted in a 40% reduction of GIP response to fat but not to glucose in whole body FABP5-knockout (FABP5(-/-)) mice, with no change in K cell count or GIP content in K cells. In an ex vivo experiment using isolated upper small intestine, oleic acid induced only a slight increase in GIP release, which was markedly enhanced by coadministration of bile and oleic acid together with attenuated GIP response in the FABP5(-/-) sample. FABP5(-/-) mice exhibited a 24% reduction in body weight gain and body fat mass under a high-fat diet compared with wild-type (FABP5(+/+)) mice; the difference was not observed between GIP-GFP homozygous knock-in (GIP(gfp/gfp))-FABP5(+/+) mice and GIP(gfp/gfp)-FABP5(-/-) mice, in which GIP is genetically deleted. These results demonstrate that bile efficiently amplifies fat-induced GIP secretion and that FABP5 contributes to the development of DIO in a GIP-dependent manner.


Nutrition | 2013

Enteral supplement enriched with glutamine, fiber, and oligosaccharide attenuates experimental colitis in mice.

Erina Joo; Shunsuke Yamane; Akihiro Hamasaki; Norio Harada; Tetsuro Matsunaga; Atsushi Muraoka; Kazuyo Suzuki; Daniela Nasteska; Toru Fukushima; Tatsuya Hayashi; Hidemi Tsuji; Kenichiro Shide; Kinsuke Tsuda; Nobuya Inagaki

OBJECTIVE Ulcerative colitis is a chronic recurrent disease characterized by acute inflammation of the colonic mucosa. In Japan, a dietary supplementation product enriched with glutamine, dietary fiber, and oligosaccharide (GFO) is widely applied for enteral nutrition support. These three components have been suggested to improve intestinal health. In this study, we investigated whether GFO has suppressive effects on mucosal damage in ulcerative colitis in an experimental mouse model. METHODS C57BL/6 mice received 2.5% dextran sulfate sodium in drinking water for 5 d to induce colitis. Then, they were given 0.25 mL of GFO or a 20% glucose solution twice daily for 10 d. Another set of mice receiving unaltered drinking water was used as the normal control group. RESULTS The body weight loss and disease activity index were significantly lower in the GFO-treated mice compared with the glucose-treated mice (P < 0.05). The decrease in colon length induced by dextran sulfate sodium was significantly alleviated in GFO-treated mice compared with glucose-treated mice (P < 0.01). In addition, the histologic findings showed that intestinal inflammation was significantly attenuated in mice treated with GFO. Furthermore, treatment with GFO significantly inhibited the dextran sulfate sodium-induced increase in the mRNA expression of interleukin-1β. CONCLUSION These results suggest that GFO has potential therapeutic value as an adjunct therapy for ulcerative colitis.

Collaboration


Dive into the Shunsuke Yamane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge