Shuntai Zhou
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuntai Zhou.
Journal of Virology | 2015
Shuntai Zhou; Corbin D. Jones; Piotr A. Mieczkowski; Ronald Swanstrom
ABSTRACT Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.
Journal of Virology | 2017
Ann Emery; Shuntai Zhou; Elizabeth Pollom; Ronald Swanstrom
ABSTRACT Full-length human immunodeficiency virus type 1 (HIV-1) RNA serves as the genome or as an mRNA, or this RNA undergoes splicing using four donors and 10 acceptors to create over 50 physiologically relevant transcripts in two size classes (1.8 kb and 4 kb). We developed an assay using Primer ID-tagged deep sequencing to quantify HIV-1 splicing. Using the lab strain NL4-3, we found that A5 (env/nef) is the most commonly used acceptor (about 50%) and A3 (tat) the least used (about 3%). Two small exons are made when a splice to acceptor A1 or A2 is followed by activation of donor D2 or D3, and the high-level use of D2 and D3 dramatically reduces the amount of vif and vpr transcripts. We observed distinct patterns of temperature sensitivity of splicing to acceptors A1 and A2. In addition, disruption of a conserved structure proximal to A1 caused a 10-fold reduction in all transcripts that utilized A1. Analysis of a panel of subtype B transmitted/founder viruses showed that splicing patterns are conserved, but with surprising variability of usage. A subtype C isolate was similar, while a simian immunodeficiency virus (SIV) isolate showed significant differences. We also observed transsplicing from a downstream donor on one transcript to an upstream acceptor on a different transcript, which we detected in 0.3% of 1.8-kb RNA reads. There were several examples of splicing suppression when the env intron was retained in the 4-kb size class. These results demonstrate the utility of this assay and identify new examples of HIV-1 splicing regulation. IMPORTANCE During HIV-1 replication, over 50 conserved spliced RNA variants are generated. The splicing assay described here uses new developments in deep-sequencing technology combined with Primer ID-tagged cDNA primers to efficiently quantify HIV-1 splicing at a depth that allows even low-frequency splice variants to be monitored. We have used this assay to examine several features of HIV-1 splicing and to identify new examples of different mechanisms of regulation of these splicing patterns. This splicing assay can be used to explore in detail how HIV-1 splicing is regulated and, with moderate throughput, could be used to screen for structural elements, small molecules, and host factors that alter these relatively conserved splicing patterns.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Charles A. Lewis; Jesse Crayle; Shuntai Zhou; Ronald Swanstrom; Richard Wolfenden
Significance Cytosine deamination appears to be largely responsible for spontaneous mutations in the modern world. Because of its sensitivity to temperature (Q10 = 4), that reaction would have furnished a mechanism for rapid evolution on a warm earth. As the temperature fell from 100° to 25 °C, the rate of cytosine-based mutation would have fallen by a factor of more than 4,000, with a corresponding increase in the stability of genetic information. Other potentially mutagenic events are known to be even more sensitive to temperature, and would presumably have led to an even steeper decline in the rate of spontaneous mutation as the earth cooled. The hydrolytic deamination of cytosine and 5-methylcytosine residues in DNA appears to contribute significantly to the appearance of spontaneous mutations in microorganisms and in human disease. In the present work, we examined the mechanism of cytosine deamination and the response of the uncatalyzed reaction to changing temperature. The positively charged 1,3-dimethylcytosinium ion was hydrolyzed at a rate similar to the rate of acid-catalyzed hydrolysis of 1-methylcytosine, for which it furnishes a satisfactory kinetic model and a probable mechanism. In agreement with earlier reports, uncatalyzed deamination was found to proceed at very similar rates for cytosine, 1-methylcytosine, cytidine, and cytidine 5′-phosphate, and also for cytosine residues in single-stranded DNA generated from a phagemid, in which we sequenced an insert representing the gene of the HIV-1 protease. Arrhenius plots for the uncatalyzed deamination of cytosine were linear over the temperature range from 90 °C to 200 °C and indicated a heat of activation (ΔH‡) of 23.4 ± 0.5 kcal/mol at pH 7. Recent evidence indicates that the surface of the earth has been cool enough to support life for more than 4 billion years and that life has been present for almost as long. If the temperature at Earths surface is assumed to have followed Newtons law of cooling, declining exponentially from 100 °C to 25 °C during that period, then half of the cytosine-deaminating events per unit biomass would have taken place during the first 0.2 billion years, and <99.4% would have occurred during the first 2 billion years.
Journal of Acquired Immune Deficiency Syndromes | 2017
Sook Kyung Lee; Shuntai Zhou; Pedro L. Baldoni; Ean Spielvogel; Nancie M. Archin; Michael G. Hudgens; David M. Margolis; Ronald Swanstrom
Background: In this study, we measured the latent HIV-1 reservoir harboring replication-competent HIV-1 in resting CD4+ T cells in participants on highly active antiretroviral therapy, quantitating the frequency of latent infection through the use of a Primer ID-based Ultra Deep Sequencing Assay (UDSA), in comparison to the readout of the quantitative viral outgrowth assay (QVOA). Methods: Viral RNA derived from culture wells of QVOA that scored as HIV-1 p24 capsid antigen positive were tagged with a specific barcode during cDNA synthesis, and the sequences within the V1–V3 region of the HIV-1 env gene were analyzed for diversity using the Primer ID-based paired-end MiSeq platform. We analyzed samples from a total of 19 participants, 2 initially treated with highly active antiretroviral therapy in acute infection and 17 treated during chronic infection. Phylogenetic trees were generated with all viral lineages detected from culture wells derived from each participant to determine the number of distinct viral lineages growing out in each well, thus capturing another level of information beyond the well being positive for viral antigen. The infectious units per million (IUPM) cell values estimated using a maximum likelihood approach, based on the number of distinct viral lineages detected (VOA-UDSA), were compared with those obtained from QVOA measured using limiting dilution. Results: IUPM estimates determined by VOA-UDSA ranged from 0.14 to 3.66 and strongly correlated with the IUPM estimates determined by QVOA (r = 0.94; P < 0.0001). Conclusions: VOA-UDSA may be an alternative readout for that currently used for QVOA.
Journal of Virology | 2016
Shuntai Zhou; Maria M. Bednar; Christa Buckheit Sturdevant; Blake M. Hauser; Ronald Swanstrom
ABSTRACT HIV-1 requires the CD4 receptor and a coreceptor (CCR5 [R5 phenotype] or CXCR4 [X4 phenotype]) to enter cells. Coreceptor tropism can be assessed by either phenotypic or genotypic analysis, the latter using bioinformatics algorithms to predict tropism based on the env V3 sequence. We used the Primer ID sequencing strategy with the MiSeq sequencing platform to reveal the structure of viral populations in the V1/V2 and C2/V3 regions of the HIV-1 env gene in 30 late-stage and 6 early-stage subjects. We also used endpoint dilution PCR followed by cloning of env genes to create pseudotyped virus to explore the link between genotypic predictions and phenotypic assessment of coreceptor usage. We found out that the most stringently sequence-based calls of X4 variants (Geno2Pheno false-positive rate [FPR] of ≤2%) formed distinct lineages within the viral population, and these were detected in 24 of 30 late-stage samples (80%), which was significantly higher than what has been seen previously by using other approaches. Non-X4 lineages were not skewed toward lower FPR scores in X4-containing populations. Phenotypic assays showed that variants with an intermediate FPR (2 to 20%) could be either X4/dual-tropic or R5 variants, although the X4 variants made up only about 25% of the lineages with an FPR of <10%, and these variants carried a distinctive sequence change. Phylogenetic analysis of both the V1/V2 and C2/V3 regions showed evidence of recombination within but very little recombination between the X4 and R5 lineages, suggesting that these populations are genetically isolated. IMPORTANCE Primer ID sequencing provides a novel approach to study genetic structures of viral populations. X4 variants may be more prevalent than previously reported when assessed by using next-generation sequencing (NGS) and with a greater depth of sampling than single-genome amplification (SGA). Phylogenetic analysis to identify lineages of sequences with intermediate FPR values may provide additional information for accurately predicting X4 variants by using V3 sequences. Limited recombination occurs between X4 and R5 lineages, suggesting that X4 and R5 variants are genetically isolated and may be replicating in different cell types or that X4/R5 recombinants have reduced fitness.
Journal of Virology | 2015
Maria M. Bednar; Blake M. Hauser; Li Hua Ping; Elena Dukhovlinova; Shuntai Zhou; Kathryn T. Arrildt; Irving Hoffman; Joseph J. Eron; Myron S. Cohen; Ronald Swanstrom
ABSTRACT The entry tropism of HIV-1 Env proteins from virus isolated from the blood and genital tract of five men with compartmentalized lineages was determined. The Env proteins isolated from the genital tract of subject C018 were macrophage-tropic proteins, while the remaining cloned env genes encoded R5 T cell-tropic proteins. The detection of a macrophage-tropic lineage of HIV-1 within the male genital tract strongly suggests that evolution of macrophage-tropic viruses can occur in anatomically isolated sites outside the central nervous system.
The Journal of Infectious Diseases | 2017
Dana S. Clutter; Shuntai Zhou; Vici Varghese; Soo Yon Rhee; Benjamin A. Pinsky; W. Jeffrey Fessel; Daniel Klein; Ean Spielvogel; Susan Holmes; Leo B. Hurley; Michael J. Silverberg; Ronald Swanstrom; Robert W. Shafer
Minority variant human immunodeficiency virus type 1 (HIV-1) nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations are associated with an increased risk of virological failure during treatment with NNRTI-containing regimens. To determine whether individuals to whom variants with isolated NNRTI-associated drug resistance were transmitted are at increased risk of virological failure during treatment with a non-NNRTI-containing regimen, we identified minority variant resistance mutations in 33 individuals with isolated NNRTI-associated transmitted drug resistance and 49 matched controls. We found similar proportions of overall and nucleoside reverse transcriptase inhibitor-associated minority variant resistance mutations in both groups, suggesting that isolated NNRTI-associated transmitted drug resistance may not be a risk factor for virological failure during treatment with a non-NNRTI-containing regimen.
The Journal of Infectious Diseases | 2018
Ann M. Dennis; Shuntai Zhou; Christopher J. Sellers; Emily Learner; Marc Potempa; Myron S. Cohen; William C. Miller; Joseph J. Eron; Ronald Swanstrom
Intrahost viral sequence diversity can be evaluated over multiple genomic regions using next-generation sequencing (NGS) and scaled to population-level diversity to identify recent human immunodeficiency virus type 1 infection. Using Primer-ID NGS, we sequenced the reverse transcriptase (RT) and env V1-V3 regions from persons with known infection dates, and assessed the mean (π) and first quintile of pairwise diversity distributions over time. The receiver operating characteristic area under the curve (AUC) of RT and V1-V3 combined showed excellent discrimination of recent infection <9 months: using π (only single transmitted variants: AUC, 0.98; threshold <1.03%; sensitivity, 97%; specificity, 89%) and the first quintile (including all variants: AUC, 0.90; threshold <0.60%; sensitivity, 91%; specificity, 92%).
Antiviral Research | 2018
Shuntai Zhou; Sara E. Williford; David R. McGivern; Christina L. Burch; Fengyu Hu; Tiffany Benzine; Paul Ingravallo; Ernest Asante-Appiah; Anita Y. M. Howe; Ronald Swanstrom; Stanley M. Lemon
Abstract Direct‐acting antivirals (DAAs) targeting NS5A are broadly effective against hepatitis C virus (HCV) infections, but sustained virological response rates are generally lower in patients infected with genotype (gt)‐1a than gt‐1b viruses. The explanation for this remains uncertain. Here, we adopted a highly accurate, ultra‐deep primer ID sequencing approach to intensively study serial changes in the NS5A‐coding region of HCV in gt‐1a‐ and gt‐1b‐infected subjects receiving a short course of monotherapy with the NS5A inhibitor, elbasvir. Low or undetectable levels of viremia precluded on‐treatment analysis in gt‐1b‐infected subjects, but variants with the resistance‐associated substitution (RAS) Y93H in NS5A dominated rebounding virus populations following cessation of treatment. These variants persisted until the end of the study, two months later. In contrast, while Y93H emerged in multiple lineages and became dominant in subjects with gt‐1a virus, these haplotypes rapidly decreased in frequency off therapy. Substitutions at Q30 and L31 emerged in distinctly independent lineages at later time points, ultimately coming to dominate the virus population off therapy. Consistent with this, cell culture studies with gt‐1a and gt‐1b reporter viruses and replicons demonstrated that Y93H confers a much greater loss of replicative fitness in gt‐1a than gt‐1b virus, and that L31M/V both compensates for the loss of fitness associated with Q30R (but not Y93H) and also boosts drug resistance. These observations show how differences in the impact of RASs on drug resistance and replicative fitness influence the evolution of gt‐1a and gt‐1b viruses during monotherapy with an antiviral targeting NS5A. HighlightsPrimer ID sequencing identifies NS5A inhibitor RASs with unparalleled accuracy and provides novel insight into RAS linkage.NS5A inhibitor resistance emerges along distinct evolutionary pathways in genotype 1a versus 1b virus infections.Y93H substitutions emerge from within multiple independent lineages present in baseline genotype 1a virus populations.Differences in the in vitro replicative fitness of viruses help to explain the persistence of some RASs off therapy.
Current Topics in Microbiology and Immunology | 2017
Ronald Swanstrom; William D. Graham; Shuntai Zhou
The surface envelope protein of any virus is major determinant of the host cell that is infected and as a result a major determinant of viral pathogenesis. Retroviruses have a single surface protein named Env. It is a trimer of heterodimers and is responsible for binding to the host cell receptor and mediating fusion between the viral and host membranes. In this review we will discuss the history of the discovery of the avian leukosis virus (ALV) and human immunodeficiency virus type 1 (HIV-1) Env proteins and their receptor specificity, comparing the many differences but having some similarities. Much of the progress in these fields has relied on viral genetics and genetic polymorphisms in the host population. A special feature of HIV-1 is that its persistent infection in its human host, to the point of depleting its favorite target cells, allows the virus to evolve new entry phenotypes to expand its host range into several new cell types. This variety of entry phenotypes has led to confusion in the field leading to the major form of entry phenotype of HIV-1 being overlooked until recently. Thus an important part of this story is the description and naming of the most abundant entry form of the virus: R5 T cell-tropic HIV-1.