Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shunya Arai is active.

Publication


Featured researches published by Shunya Arai.


Blood | 2012

Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples.

Keiki Kumano; Shunya Arai; Masataka Hosoi; Kazuki Taoka; Naoya Takayama; Makoto Otsu; Genta Nagae; Koki Ueda; Kumi Nakazaki; Yasuhiko Kamikubo; Koji Eto; Hiroyuki Aburatani; Hiromitsu Nakauchi; Mineo Kurokawa

Induced pluripotent stem cells (iPSCs) can be generated by the expression of defined transcription factors not only from normal tissue, but also from malignant cells. Cancer-derived iPSCs are expected to provide a novel experimental opportunity to establish the disease model. We generated iPSCs from imatinib-sensitive chronic myelogenous leukemia (CML) patient samples. Remarkably, the CML-iPSCs were resistant to imatinib although they consistently expressed BCR-ABL oncoprotein. In CML-iPSCs, the phosphorylation of ERK1/2, AKT, and JNK, which are essential for the maintenance of both BCR-ABL (+) leukemia cells and iPSCs, were unchanged after imatinib treatment, whereas the phosphorylation of signal transducer and activator of transcription (STAT)5 and CRKL was significantly decreased. These results suggest that the signaling for iPSCs maintenance compensates for the inhibition of BCR-ABL. CML-iPSC-derived hematopoietic cells recovered the sensitivity to imatinib although CD34(+)38(-)90(+)45(+) immature cells were resistant to imatinib, which recapitulated the pathophysiologic feature of the initial CML. CML-iPSCs provide us with a novel platform to investigate CML pathogenesis on the basis of patient-derived samples.


Blood | 2011

Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins

Akihide Yoshimi; Susumu Goyama; Naoko Watanabe-Okochi; Yumiko Yoshiki; Yasuhito Nannya; Eriko Nitta; Shunya Arai; Tomohiko Sato; Munetake Shimabe; Masahiro Nakagawa; Yoichi Imai; Toshio Kitamura; Mineo Kurokawa

Evi1 (ecotropic viral integration site 1) is essential for proliferation of hematopoietic stem cells and implicated in the development of myeloid disorders. Particularly, high Evi1 expression defines one of the largest clusters in acute myeloid leukemia and is significantly associated with extremely poor prognosis. However, mechanistic basis of Evi1-mediated leukemogenesis has not been fully elucidated. Here, we show that Evi1 directly represses phosphatase and tensin homologue deleted on chromosome 10 (PTEN) transcription in the murine bone marrow, which leads to activation of AKT/mammalian target of rapamycin (mTOR) signaling. In a murine bone marrow transplantation model, Evi1 leukemia showed modestly increased sensitivity to an mTOR inhibitor rapamycin. Furthermore, we found that Evi1 binds to several polycomb group proteins and recruits polycomb repressive complexes for PTEN down-regulation, which shows a novel epigenetic mechanism of AKT/mTOR activation in leukemia. Expression analyses and ChIPassays with human samples indicate that our findings in mice models are recapitulated in human leukemic cells. Dependence of Evi1-expressing leukemic cells on AKT/mTOR signaling provides the first example of targeted therapeutic modalities that suppress the leukemogenic activity of Evi1. The PTEN/AKT/mTOR signaling pathway and the Evi1-polycomb interaction can be promising therapeutic targets for leukemia with activated Evi1.


Journal of Experimental Medicine | 2011

Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity.

Keisuke Kataoka; Tomohiko Sato; Akihide Yoshimi; Susumu Goyama; Takako Tsuruta; Hiroshi Kobayashi; Munetake Shimabe; Shunya Arai; Masahiro Nakagawa; Yoichi Imai; Keiki Kumano; Katsuyoshi Kumagai; Naoto Kubota; Takashi Kadowaki; Mineo Kurokawa

A new mouse in which an IRES-GFP cassette is knocked-in to the Evi1 locus reveals that HSC long-term multilineage repopulating activity specifically segregates with expression of the Evi1 transcription factor.


Journal of Clinical Investigation | 2014

Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity

Yuki Kagoya; Akihide Yoshimi; Keisuke Kataoka; Masahiro Nakagawa; Keiki Kumano; Shunya Arai; Hiroshi Kobayashi; Taku Saito; Yoichiro Iwakura; Mineo Kurokawa

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy that originates from leukemia-initiating cells (LICs). The identification of common mechanisms underlying LIC development will be important in establishing broadly effective therapeutics for AML. Constitutive NF-κB pathway activation has been reported in different types of AML; however, the mechanism of NF-κB activation and its importance in leukemia progression are poorly understood. Here, we analyzed myeloid leukemia mouse models to assess NF-κB activity in AML LICs. We found that LICs, but not normal hematopoietic stem cells or non-LIC fractions within leukemia cells, exhibited constitutive NF-κB activity. This activity was maintained through autocrine TNF-α secretion, which formed an NF-κB/TNF-α positive feedback loop. LICs had increased levels of active proteasome machinery, which promoted the degradation of IκBα and further supported NF-κB activity. Pharmacological inhibition of the proteasome complex markedly suppressed leukemia progression in vivo. Conversely, enhanced activation of NF-κB signaling expanded LIC frequency within leukemia cell populations. We also demonstrated a strong correlation between NF-κB activity and TNF-α secretion in human AML samples. Our findings indicate that NF-κB/TNF-α signaling in LICs contributes to leukemia progression and provide a widely applicable approach for targeting LICs.


Blood | 2011

Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells

Shunya Arai; Akihide Yoshimi; Munetake Shimabe; Motoshi Ichikawa; Masahiro Nakagawa; Yoichi Imai; Susumu Goyama; Mineo Kurokawa

Ecotropic viral integration site-1 (Evi-1) is a nuclear transcription factor that plays an essential role in the regulation of hematopoietic stem cells. Aberrant expression of Evi-1 has been reported in up to 10% of patients with acute myeloid leukemia and is a diagnostic marker that predicts a poor outcome. Although chromosomal rearrangement involving the Evi-1 gene is one of the major causes of Evi-1 activation, overexpression of Evi-1 is detected in a subgroup of acute myeloid leukemia patients without any chromosomal abnormalities, which indicates the presence of other mechanisms for Evi-1 activation. In this study, we found that Evi-1 is frequently up-regulated in bone marrow cells transformed by the mixed-lineage leukemia (MLL) chimeric genes MLL-ENL or MLL-AF9. Analysis of the Evi-1 gene promoter region revealed that MLL-ENL activates transcription of Evi-1. MLL-ENL-mediated up-regulation of Evi-1 occurs exclusively in the undifferentiated hematopoietic population, in which Evi-1 particularly contributes to the propagation of MLL-ENL-immortalized cells. Furthermore, gene-expression analysis of human acute myeloid leukemia cases demonstrated the stem cell-like gene-expression signature of MLL-rearranged leukemia with high levels of Evi-1. Our findings indicate that Evi-1 is one of the targets of MLL oncoproteins and is selectively activated in hematopoietic stem cell-derived MLL leukemic cells.


Nature Communications | 2014

Recurrent CDC25C mutations drive malignant transformation in FPD/AML

Akihide Yoshimi; Takashi Toya; Masahito Kawazu; Toshihide Ueno; Ayato Tsukamoto; Hiromitsu Iizuka; Masahiro Nakagawa; Yasuhito Nannya; Shunya Arai; Hironori Harada; Kensuke Usuki; Yasuhide Hayashi; Etsuro Ito; Keita Kirito; Hideaki Nakajima; Motoshi Ichikawa; Hiroyuki Mano; Mineo Kurokawa

Familial platelet disorder (FPD) with predisposition to acute myelogenous leukaemia (AML) is characterized by platelet defects with a propensity for the development of haematological malignancies. Its molecular pathogenesis is poorly understood, except for the role of germline RUNX1 mutations. Here we show that CDC25C mutations are frequently found in FPD/AML patients (53%). Mutated CDC25C disrupts the G2/M checkpoint and promotes cell cycle progression even in the presence of DNA damage, suggesting a critical role for CDC25C in malignant transformation in FPD/AML. The predicted hierarchical architecture shows that CDC25C mutations define a founding pre-leukaemic clone, followed by stepwise acquisition of subclonal mutations that contribute to leukaemia progression. In three of seven individuals with CDC25C mutations, GATA2 is the target of subsequent mutation. Thus, CDC25C is a novel gene target identified in haematological malignancies. CDC25C is also useful as a clinical biomarker that predicts progression of FPD/AML in the early stage.


Blood | 2011

AML1/RUNX1 functions as a cytoplasmic attenuator of NF-κB signaling in the repression of myeloid tumors

Masahiro Nakagawa; Munetake Shimabe; Naoko Watanabe-Okochi; Shunya Arai; Akihide Yoshimi; Akihito Shinohara; Nahoko Nishimoto; Keisuke Kataoka; Tomohiko Sato; Keiki Kumano; Yasuhito Nannya; Motoshi Ichikawa; Yoichi Imai; Mineo Kurokawa

Functional deregulation of transcription factors has been found in many types of tumors. Transcription factor AML1/RUNX1 is one of the most frequent targets of chromosomal abnormalities in human leukemia and altered function of AML1 is closely associated with malignant transformation of hematopoietic cells. However, the molecular basis and therapeutic targets of AML1-related leukemia are still elusive. Here, we explored immediate target pathways of AML1 by in vitro synchronous inactivation in hematopoietic cells. We found that AML1 inhibits NF-κB signaling through interaction with IκB kinase complex in the cytoplasm. Remarkably, AML1 mutants found in myeloid tumors lack the ability to inhibit NF-κB signaling, and human cases with AML1-related leukemia exhibits distinctly activated NF-κB signaling. Furthermore, inhibition of NF-κB signaling in leukemic cells with mutated AML1 efficiently blocks their growth and development of leukemia. These findings reveal a novel role for AML1 as a cytoplasmic attenuator of NF-κB signaling and indicate that NF-κB signaling is one of the promising therapeutic targets of hematologic malignancies with AML1 abnormality.


Blood | 2011

Loss of AML1/Runx1 accelerates the development of MLL-ENL leukemia through down-regulation of p19ARF.

Nahoko Nishimoto; Shunya Arai; Motoshi Ichikawa; Masahiro Nakagawa; Susumu Goyama; Keiki Kumano; Tsuyoshi Takahashi; Yasuhiko Kamikubo; Yoichi Imai; Mineo Kurokawa

Dysfunction of AML1/Runx1, a transcription factor, plays a crucial role in the development of many types of leukemia. Additional events are often required for AML1 dysfunction to induce full-blown leukemia; however, a mechanistic basis of their cooperation is still elusive. Here, we investigated the effect of AML1 deficiency on the development of MLL-ENL leukemia in mice. Aml1 excised bone marrow cells lead to MLL-ENL leukemia with shorter duration than Aml1 intact cells in vivo. Although the number of MLL-ENL leukemia-initiating cells is not affected by loss of AML1, the proliferation of leukemic cells is enhanced in Aml1-excised MLL-ENL leukemic mice. We found that the enhanced proliferation is the result of repression of p19(ARF) that is directly regulated by AML1 in MLL-ENL leukemic cells. We also found that down-regulation of p19(ARF) induces the accelerated onset of MLL-ENL leukemia, suggesting that p19(ARF) is a major target of AML1 in MLL-ENL leukemia. These results provide a new insight into a role for AML1 in the progression of leukemia.


Experimental Hematology | 2015

Targeted gene correction of RUNX1 in induced pluripotent stem cells derived from familial platelet disorder with propensity to myeloid malignancy restores normal megakaryopoiesis

Hiromitsu Iizuka; Yuki Kagoya; Keisuke Kataoka; Akihide Yoshimi; Masashi Miyauchi; Kazuki Taoka; Keiki Kumano; Takashi Yamamoto; Akitsu Hotta; Shunya Arai; Mineo Kurokawa

Familial platelet disorder with propensity to acute myeloid leukemia (FPD/AML) is an autosomal dominant disease associated with a germline mutation in the RUNX1 gene and is characterized by thrombocytopenia and an increased risk of developing myeloid malignancies. We generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts of a patient with FPD/AML possessing a nonsense mutation R174X in the RUNX1 gene. Consistent with the clinical characteristics of the disease, FPD iPSC-derived hematopoietic progenitor cells were significantly impaired in undergoing megakaryocytic differentiation and subsequent maturation, as determined by colony-forming cell assay and surface marker analysis. Notably, when we corrected the RUNX1 mutation using transcription activator-like effector nucleases in conjunction with a donor plasmid containing normal RUNX1 cDNA sequences, megakaryopoiesis and subsequent maturation were restored in FPD iPSC-derived hematopoietic cells. These findings clearly indicate that the RUNX1 mutation is robustly associated with thrombocytopenia in patients with FPD/AML, and transcription activator-like effector nuclease-mediated gene correction in iPSCs generated from patient-derived cells could provide a promising clinical application for treatment of the disease.


Blood | 2014

JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2.

Yuki Kagoya; Akihide Yoshimi; Takako Tsuruta-Kishino; Shunya Arai; Takashi Satoh; Shizuo Akira; Mineo Kurokawa

Genetic instability is strongly involved in cancer development and progression, and elucidating the mechanism could lead to novel therapeutics for preventing carcinogenesis. Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal myeloid disorders with a high prevalence of JAK2V617F mutation, and transformation to acute myeloid leukemia through accumulation of additional mutations is a major complication in MPNs. Here, we showed that JAK2V617F(+) cells conferred paracrine DNA damage to neighboring normal cells as well as to themselves through increased reactive oxygen species (ROS). We screened candidate factors responsible for the effect and found that lipocalin-2 (Lcn2) is overexpressed in JAK2V617F(+) cells and that short hairpin RNA-mediated knockdown of Lcn2 significantly alleviated the paracrine DNA damage. Normal hematopoietic cells showed elevated ROS levels through increased intracellular iron levels when treated with lipocalin-2, which led to p53 pathway activation, increased apoptosis, and decreased cellular proliferation. In contrast, JAK2V617F(+) cells did not suffer from lipocalin-2-induced growth suppression resulting from attenuated p53 pathway activation, which conferred a relative growth advantage to JAK2V617F(+) clones. In summary, we demonstrated that JAK2V617F-harboring cells cause paracrine DNA damage accumulation through secretion of lipocalin-2, which gives proliferative advantage to themselves and an increased risk for leukemic transformation to both JAK2V617F(+) and JAK2V617F(-) clones.

Collaboration


Dive into the Shunya Arai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihide Yoshimi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomohiko Sato

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge