Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shunya Hozumi is active.

Publication


Featured researches published by Shunya Hozumi.


Gene Expression Patterns | 2014

Expression patterns of dnmt3aa, dnmt3ab, and dnmt4 during development and fin regeneration in zebrafish.

Kazuya Takayama; Nobuyoshi Shimoda; Shunsuke Takanaga; Shunya Hozumi; Yutaka Kikuchi

Epigenetic modifications such as DNA methylation and chromatin modifications are critical for regulation of spatiotemporal gene expression during development. In mammals, the de novo-type DNA methyltransferases (Dnmts), Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns during development. In addition to developmental processes, we recently showed that DNA methylation levels are dynamically changed during zebrafish fin regeneration, suggesting that the de novo-type Dnmts might play roles in the regulation of gene expression during regeneration processes. Here, we showed the detailed expression profiles of three zebrafish dnmt genes (dnmt3aa, dnmt3ab, and dnmt4), which were identified as the orthologues of mammalian dnmt3a and dnmt3b, during embryonic and larval development, as well as fin regeneration processes. dnmt3aa and dnmt3ab are expressed in the brain, pharyngeal arches, pectoral fin buds, intestine, and swim bladder; the specific expression of dnmt3aa is observed in the pronephric duct during larval development. dnmt4 expression is observed in the zona limitans intrathalamica, midbrain-hindbrain boundary, ciliary marginal zone, pharyngeal arches, auditory capsule, pectoral fin buds, intestine, pancreas, liver, and hematopoietic cells in the aorta-gonad-mesonephros and caudal hematopoietic tissue from 48 to 72 h post-fertilization. Furthermore, during fin regeneration, strong dnmt3aa expression, and faint dnmt3ab and dnmt4 expression are detected in blastema cells at 72 h post-amputation. Taken together, our results suggest that zebrafish Dnmt3aa, Dnmt3ab, and Dnmt4 may play roles in the formation of various organs, such as the brain, kidney, digestive organs, and/or hematopoietic cells, as well as in the differentiation of blastema cells.


BMC Developmental Biology | 2014

Mechanistic target of rapamycin complex 1 signaling regulates cell proliferation, cell survival, and differentiation in regenerating zebrafish fins

Kentaro Hirose; Taishi Shiomi; Shunya Hozumi; Yutaka Kikuchi

BackgroundThe mechanistic target of rapamycin complex1 (mTORC1) signaling pathway has been implicated in functions of multicellular processes, including cell growth and metabolism. Although recent reports showed that many signaling pathways, including Activin, Bmp, Fgf, sonic hedgehog, Insulin-like growth factor (IGF), Notch, retinoic acid, and Wnt, are implicated in non-mammalian vertebrate regeneration, also known as epimorphic regeneration, mTORC1 function remains unknown.ResultsTo investigate the role of mTORC1 signaling pathway in zebrafish caudal fin, we examined the activation and function of mTORC1 signaling using an antibody against phosphorylated S6 kinase and a specific inhibitor, rapamycin. mTORC1 signaling is activated in proliferative cells of intra-ray and wound epidermal cells before blastema formation, as well as in proliferative blastema cells, wound epidermal cells, and osteoblasts during regenerative outgrowth. Before blastema formation, proliferation of intra-ray and wound epidermal cells is suppressed, but cell death is not affected by mTORC1 signaling inhibition with rapamycin. Moreover, rapamycin treatment inhibits blastema and wound epidermal cell proliferation and survival during blastema formation and regenerative outgrowth, as well as osteoblast proliferation and differentiation during regenerative outgrowth. We further determined that mTORC1 signaling is regulated through IGF-1 receptor/phosphatidylinositol-3 kinase and Wnt pathways during fin regeneration.ConclusionTaken together, our findings reveal that mTORC1 signaling regulates proliferation, survival, and differentiation of intra-ray cells, wound epidermis, blastema cells, and/or osteoblasts in various fin regeneration stages downstream of IGF and Wnt signaling pathways.


Stem Cells and Development | 2013

Ddx46 Is Required for Multi-Lineage Differentiation of Hematopoietic Stem Cells in Zebrafish

Ryo Hirabayashi; Shunya Hozumi; Shin-ichi Higashijima; Yutaka Kikuchi

Balanced and precisely controlled processes between self-renewal and differentiation of hematopoietic stem cells (HSCs) into all blood lineages are critical for vertebrate definitive hematopoiesis. However, the molecular mechanisms underlying the maintenance and differentiation of HSCs have not been fully elucidated. Here, we show that zebrafish Ddx46, encoding a DEAD-box RNA helicase, is expressed in HSCs of the caudal hematopoietic tissue (CHT). The number of HSCs expressing the molecular markers cmyb or T-cell acute lymphocytic leukemia 1 (tal1) was markedly reduced in Ddx46 mutants. However, massive cell death of HSCs was not detected, and proliferation of HSCs was normal in the CHT of the mutants at 48 h postfertilization. We found that myelopoiesis occurred, but erythropoiesis and lymphopoiesis were suppressed, in Ddx46 mutants. Consistent with these results, the expression of spi1, encoding a regulator of myeloid development, was maintained, but the expression of gata1a, encoding a regulator of erythrocyte development, was downregulated in the mutants. Taken together, our results provide the first genetic evidence that zebrafish Ddx46 is required for the multilineage differentiation of HSCs during development, through the regulation of specific gene expressions.


PLOS ONE | 2012

DEAD-box protein Ddx46 is required for the development of the digestive organs and brain in zebrafish

Shunya Hozumi; Ryo Hirabayashi; Akio Yoshizawa; Mitsuko Ogata; Tohru Ishitani; Makiko Tsutsumi; Atsushi Kuroiwa; Motoyuki Itoh; Yutaka Kikuchi

Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor), a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing.


Development | 2017

Nuclear movement regulated by non-Smad Nodal signaling via JNK is associated with Smad signaling during zebrafish endoderm specification

Shunya Hozumi; Shun Aoki; Yutaka Kikuchi

Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. Summary: The movement of lateral marginal cell nuclei toward the yolk syncytial layer during endoderm specification involves the Nodal-regulated reorientation of microtubule-organizing centers, phospho-Smad2 nuclear translocation and sox32 induction.


Biochemical and Biophysical Research Communications | 2018

The N-terminal domain of gastrulation brain homeobox 2 (Gbx2) is required for iridophore specification in zebrafish

Shunya Hozumi; Masaki Shirai; Jingxin Wang; Shun Aoki; Yutaka Kikuchi

Although body color pattern formation by pigment cells plays critical roles in animals, pigment cell specification has not yet been fully elucidated. In zebrafish, there are three chromatophores: melanophore, iridophore, and xanthophore, that are derived from neural crest cells (NCCs). A recent study has reported the differentially expressed genes between melanophores and iridophores. Based on transcriptome data, we identified that Gbx2 is required for iridophore specification during development. In support of this, iridophore formation is suppressed by gbx2 knockdown by morpholino antisense oligonucleotide, at 72 h post fertilization (hpf) in zebrafish. Moreover, gbx2 is expressed in sox10-expressing NCCs and guanine crystal plates-containing iridophores during development at 24 and 48 hpf, respectively. In gbx2 knockdown zebrafish embryos, apoptosis of sox10-expressing NCCs was detected at 24 hpf without any effect on the formation of melanophores and xanthophores at 48 hpf. We further observed that the N-terminal domain of Gbx2 is able to rescue the iridophore formation defect caused by gbx2 knockdown. Our study provides insights into the requirement of N-terminal domain of Gbx2 for iridophore specification in zebrafish.


The Japanese Biochemical Society/The Molecular Biology Society of Japan | 2017

Gbx2 function in pigment cell development of zebrafish

Masaki Shirai; Jingxin Wang; Shunya Hozumi; Yutaka Kikuchi


The Japanese Biochemical Society/The Molecular Biology Society of Japan | 2017

Nuclear movement regulated by non-Smad Nodal signaling via JNK promotes Smad2 signal transduction during zebrafish endoderm specification

Shunya Hozumi; Shun Aoki; Yutaka Kikuchi


The Molecular Biology Society of Japan | 2016

Nodal/JNK signaling pathway regulates endoderm specification through the nuclear migration

Shunya Hozumi; Shun Aoki; Yutaka Kikuchi


The Molecular Biology Society of Japan | 2016

Analysis of the nuclear F-actin in zebrafish during early development

Shun Aoki; Shunya Hozumi; Yutaka Kikuchi

Collaboration


Dive into the Shunya Hozumi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge