Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shunying Hu is active.

Publication


Featured researches published by Shunying Hu.


Journal of the American Heart Association | 2017

Mff‐Dependent Mitochondrial Fission Contributes to the Pathogenesis of Cardiac Microvasculature Ischemia/Reperfusion Injury via Induction of mROS‐Mediated Cardiolipin Oxidation and HK2/VDAC1 Disassociation‐Involved mPTP Opening

Hao Zhou; Shunying Hu; Qinhua Jin; Chen Shi; Ying Zhang; Pingjun Zhu; Qiang Ma; Feng Tian; Chen Y

Background The cardiac microvascular system ischemia/reperfusion injury following percutaneous coronary intervention is a clinical thorny problem. This study explores the mechanisms by which ischemia/reperfusion injury induces cardiac microcirculation collapse. Methods and Results In wild‐type mice, mitochondrial fission factor (Mff) expression increased in response to acute microvascular ischemia/reperfusion injury. Compared with wild‐type mice, homozygous Mff‐deficient (Mffgt) mice exhibited a smaller infarcted area, restored cardiac function, improved blood flow, and reduced microcirculation perfusion defects. Histopathology analysis demonstrated that cardiac microcirculation endothelial cells (CMECs) in Mffgt mice had an intact endothelial barrier, recovered phospho‐endothelial nitric oxide synthase production, opened lumen, undivided mitochondrial structures, and less CMEC death. In vitro, Mff‐deficient CMECs (derived from Mffgt mice or Mff small interfering RNA–treated) demonstrated less mitochondrial fission and mitochondrial‐dependent apoptosis compared with cells derived from wild‐type mice. The loss of Mff inhibited mitochondrial permeability transition pore opening via blocking the oligomerization of voltage‐dependent anion channel 1 and subsequent hexokinase 2 separation from mitochondria. Moreover, Mff deficiency reduced the cyt‐c leakage into the cytoplasm by alleviating cardiolipin oxidation resulting from damage to the electron transport chain complexes and mitochondrial reactive oxygen species overproduction. Conclusions This evidence clearly illustrates that microcirculatory ischemia/reperfusion injury can be attributed to Mff‐dependent mitochondrial fission via voltage‐dependent anion channel 1/hexokinase 2–mediated mitochondrial permeability transition pore opening and mitochondrial reactive oxygen species/cardiolipin involved cyt‐c release.


Journal of Pineal Research | 2017

Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis

Hao Zhou; Ying Zhang; Shunying Hu; Chen Shi; Pingjun Zhu; Qiang Ma; Qinhua Jin; Feng Cao; Feng Tian; Chen Y

The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin‐treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP‐activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin‐related protein 1 (Drp1)‐dependent mitochondrial fission, which subsequently induced voltage‐dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy‐mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p‐Drp1S616 downregulation and p‐Drp1S37 upregulation, which blunted Drp1‐dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1‐HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy‐mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission‐VDAC1‐HK2‐mPTP‐mitophagy axis via activation of AMPKα.


Free Radical Biology and Medicine | 2016

Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca2+–XO–ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways

Ying Zhang; Hao Zhou; Wenbo Wu; Chen Shi; Shunying Hu; Tong Yin; Qiang Ma; Tianwen Han; Yingqian Zhang; Feng Tian; Chen Y

Microvascular endothelial cells (CMECs) oxidative damage resulting from hypoxia/reoxygenation (H/R) injury is responsible for microcirculation perfusion disturbances and the progression of cardiac dysfunction. However, few strategies are available to reverse such pathologies. Here, we studied the effects and mechanisms of liraglutide on CEMCs oxidative damage, focusing in particular on calcium overload-triggered free radical injury signals and the GLP-1R/PI3K/Akt/survivin survival pathways. The results indicate that H/R increased IP3R expression but reduced SERCA2a expression, which rapidly raised intracellular Ca(2+) levels, subsequently leading to Ca(2+)-dependent xanthine oxidase (XO) activation, reactive oxygen species (ROS) production and the cellular apoptosis of CMECs. However, liraglutide pretreatment abrogated Ca(2+)-mediated oxidative apoptosis. Furthermore, liraglutide regulated the rate of IP3R/SERCA2a gene transcription and conserved SERCA2a-ATPase activity via the maintenance of ATP production under H/R, which drove excessive Ca(2+) reflux to the sarcoplasmic reticulum (SR) and inhibited Ca(2+) release from the SR, ultimately restoring Ca(2+) homeostasis. Furthermore, the regulatory role of liraglutide on Ca(2+) balance in conjunction with its up-regulation of superoxide dismutase, glutathione and glutathione peroxidase collectively scavenged the excess ROS under H/R. Moreover, we showed that liraglutide strengthened Akt phosphorylation and subsequently survivin expression. In addition, both the blockade of the GLP-1R/PI3K/Akt pathways and the siRNA-mediated knockdown of survivin abolished the protective effects of liraglutide on SR-Ca(2+) function and CMECs oxidative apoptosis. In summary, this study confirmed that H/R induced CMECs oxidative damage through the SR-Ca(2+)-XO-ROS injury signals and that liraglutide pretreatment may suppress such CMECs damage through the PI3K/Akt/survivin pathways.


Redox biology | 2018

DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways

Qinhua Jin; Ruibing Li; Nan Hu; Ting Xin; Pingjun Zhu; Shunying Hu; Sai Ma; Hong Zhu; Jun Ren; Hao Zhou

Mitochondrial fission and selective mitochondrial autophagy (mitophagy) form an essential axis of mitochondrial quality control that plays a critical role in the development of cardiac ischemia-reperfusion (IR) injury. However, the precise upstream molecular mechanism of fission/mitophagy remains unclear. Dual-specificity protein phosphatase1 (DUSP1) regulates cardiac metabolism, but its physiological contribution in the reperfused heart, particularly its influence on mitochondrial homeostasis, is unknown. Here, we demonstrated that cardiac DUSP1 was downregulated following acute cardiac IR injury. In vivo, compared to wild-type mice, DUSP1 transgenic mice (DUSP1TG mice) demonstrated a smaller infarcted area and the improved myocardial function. In vitro, the IR-induced DUSP1 deficiency promoted the activation of JNK which upregulated the expression of the mitochondrial fission factor (Mff). A higher expression level of Mff was associated with elevated mitochondrial fission and mitochondrial apoptosis. Additionally, the loss of DUSP1 also amplified the Bnip3 phosphorylated activation via JNK, leading to the activation of mitophagy. Increased mitophagy overtly consumed mitochondrial mass resulting into the mitochondrial metabolism disorder. However, the reintroduction of DUSP1 blunted Mff/Bnip3 activation and therefore alleviated the fatal mitochondrial fission/mitophagy by inactivating the JNK pathway, providing a survival advantage to myocardial tissue following IR stress. The results of our study suggest that DUSP1 and its downstream JNK pathway are therapeutic targets for conferring protection against IR injury by repressing Mff-mediated mitochondrial fission and Bnip3-required mitophagy.


Redox biology | 2017

Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury

Hao Zhou; Pingjun Zhu; Jun Guo; Nan Hu; Shuyi Wang; Dandan Li; Shunying Hu; Jun Ren; Feng Cao; Chen Y

Ripk3-required necroptosis and mitochondria-mediated apoptosis are the predominant types of cell death that largely account for the development of cardiac ischemia reperfusion injury (IRI). Here, we explored the effect of Ripk3 on mitochondrial apoptosis. Compared with wild-type mice, the infarcted area in Ripk3-deficient (Ripk3-/-) mice had a relatively low abundance of apoptotic cells. Moreover, the loss of Ripk3 protected the mitochondria against IRI and inhibited caspase9 apoptotic pathways. These protective effects of Ripk3 deficiency were relied on mitophagy activation. However, inhibition of mitophagy under Ripk3 deficiency enhanced cardiomyocyte and endothelia apoptosis, augmented infarcted area and induced microvascular dysfunction. Furthermore, ischemia activated mitophagy by modifying FUNDC1 dephosphorylation, which substantively engulfed mitochondria debris and cytochrome-c, thus blocking apoptosis signal. However, reperfusion injury elevated the expression of Ripk3 which disrupted FUNDC1 activation and abated mitophagy, increasing the likelihood of apoptosis. In summary, this study confirms the promotive effect of Ripk3 on mitochondria-mediated apoptosis via inhibition of FUNDC1-dependent mitophagy in cardiac IRI. These findings provide new insight into the roles of Ripk3-related necroptosis, mitochondria-mediated apoptosis and FUNDC1-required mitophagy in cardiac IRI.


Redox biology | 2018

Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways

Chen Shi; Yong Cai; Yongheng Li; Ye Li; Nan Hu; Sai Ma; Shunying Hu; Pingjun Zhu; Weihu Wang; Hao Zhou

Despite the increasingly important role of Hippo-Yap in hepatocellular carcinoma (HCC) development and progression, little insight is available at the time regarding the specifics interaction of Yap and cancer cells migration. Here, we identified the mechanism by which tumor-intrinsic Yap deletion resulted in HCC migratory inhibition. Yap was greatly upregulated in HCC and its expression promoted the cells migration. Functional studies found that knockdown of Yap induced JNK phosphorylation which closely bound to the Bnip3 promoter and contributed to Bnip3 expression. Higher Bnip3 employed excessive mitophagy leading to mitochondrial dysfunction and ATP shortage. The insufficient ATP inactivated SERCA and consequently triggered intracellular calcium overload. As the consequence of calcium oscillation, Ca/calmodulin-dependent protein kinases II (CaMKII) was signaled and subsequently inhibited cofilin activity via phosphorylated modification. The phosphorylated cofilin failed to manipulate F-actin polymerization and lamellipodium formation, resulting into the impairment of lamellipodium-based migration. Collectively, our results identified Hippo-Yap as the tumor promoter in hepatocellular carcinoma that mediated via activation of cofilin/F-actin/lamellipodium axis by limiting JNK-Bnip3-SERCA-CaMKII pathways, with potential application to HCC therapy involving cancer metastasis.


Journal of Pineal Research | 2017

Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways

Hao Zhou; Dandan Li; Pingjun Zhu; Shunying Hu; Nan Hu; Sai Ma; Ying Zhang; Tianwen Han; Jun Ren; Feng Cao; Chen Y

Platelet activation is a major (patho‐) physiological mechanism that underlies ischemia/reperfusion (I/R) injury. In this study, we explored the molecular signals for platelet hyperactivity and investigated the beneficial effects of melatonin on platelet reactivity in response to I/R injury. After reperfusion, peroxisome proliferator‐activated receptor γ (PPARγ) was progressively downregulated in patients with acute myocardial infarction undergoing coronary artery bypass grafting (CABG) surgery and in mice with I/R injury model. Loss of PPARγ was closely associated with FUN14 domain containing 1 (FUNDC1) dephosphorylation and mitophagy activation, leading to increased mitochondrial electron transport chain complex (ETC.) activity, enhanced mitochondrial respiratory function, and elevated ATP production. The improved mitochondrial function strongly contributed to platelet aggregation, spreading, expression of P‐selectin, and final formation of micro‐thromboses, eventually resulting in myocardial dysfunction and microvascular structural destruction. However, melatonin powerfully suppressed platelet activation via restoration of the PPARγ content in platelets, which subsequently blocked FUNDC1‐required mitophagy, mitochondrial energy production, platelet hyperactivity, and cardiac I/R injury. In contrast, genetic ablation of PPARγ in platelet abolished the beneficial effects of melatonin on mitophagy, mitochondrial ATP supply, and platelet activation. Our results lay the foundation for the molecular mechanism of platelet activation in response to I/R injury and highlight that the manipulation of the PPARγ/FUNDC1/mitophagy pathway by melatonin could be a novel strategy for cardioprotection in the setting of cardiac I/R injury.


Redox biology | 2018

Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission

Hao Zhou; Shuyi Wang; Pingjun Zhu; Shunying Hu; Chen Y; Jun Ren

Impaired cardiac microvascular function contributes to diabetic cardiovascular complications although effective therapy remains elusive. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor recently approved for treatment of type 2 diabetes, promotes glycosuria excretion and offers cardioprotective actions beyond its glucose-lowering effects. This study was designed to evaluate the effect of empagliflozin on cardiac microvascular injury in diabetes and the underlying mechanism involved with a focus on mitochondria. Our data revealed that empagliflozin improved diabetic myocardial structure and function, preserved cardiac microvascular barrier function and integrity, sustained eNOS phosphorylation and endothelium-dependent relaxation, as well as improved microvessel density and perfusion. Further study suggested that empagliflozin exerted its effects through inhibition of mitochondrial fission in an adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent manner. Empagliflozin restored AMP-to-ATP ratio to trigger AMPK activation, suppressed Drp1S616 phosphorylation, and increased Drp1S637 phosphorylation, ultimately leading to inhibition of mitochondrial fission. The empagliflozin-induced inhibition of mitochondrial fission preserved cardiac microvascular endothelial cell (CMEC) barrier function through suppressed mitochondrial reactive oxygen species (mtROS) production and subsequently oxidative stress to impede CMEC senescence. Empagliflozin-induced fission loss also favored angiogenesis by promoting CMEC migration through amelioration of F-actin depolymerization. Taken together, these results indicated the therapeutic promises of empagliflozin in the treatment of pathological microvascular changes in diabetes.


Endocrine | 2016

Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction

Wei Ren Chen; Xue-Qin Shen; Ying Zhang; Chen Y; Shunying Hu; Geng Qian; Jing Wang; Junjie Yang; Zhifeng Wang; Feng Tian

The influence of glucagon-like peptide-1 has been studied in several studies in patients with acute myocardial infarction, but not in patients with non-ST-segment elevation myocardial infarction (NSTEMI). We planned to evaluate the effects of liraglutide on left ventricular function in patients with NSTEMI. A total of 90 patients were randomized 1:1 to receive either liraglutide (0.6xa0mg for 2xa0days, 1.2xa0mg for 2xa0days, followed by 1.8xa0mg for 3xa0days) or placebo for 7xa0days. Eighty-three patients completed the trial. Transthoracic echocardiography was used to assess left ventricular function. At 3xa0months, the primary endpoint, the difference in the change in left ventricular ejection fraction between the two groups was +4.7xa0% (liraglutide vs. placebo 95xa0% CI +0.7 to +9.2xa0% Pxa0=xa00.009) under intention-to-treat analysis. The difference in decrease in serum glycosylated hemoglobin levels was −0.2xa0% (liraglutide vs. placebo 95xa0% CI −0.1 to −0.3xa0%; Pxa0<xa00.001). Inflammation and oxidative stress improved significantly in the liraglutide group compared to the placebo group. Liraglutide could improve left ventricular function in patients with NSTEMI, making it a potential adjuvant therapy for NSTEMI.


Angiogenesis | 2018

BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk–Nox2–Drp1-mitochondrial fission pathways

Hao Zhou; Chen Shi; Shunying Hu; Hong Zhu; Jun Ren; Chen Y

BackgroundMitochondrial fission has been identified as the pathogenesis underlying the development of cardiac microvascular ischemia reperfusion (IR) injury, although the regulatory signaling upstream from fission is far from clear. Bax inhibitor is a novel anti-apoptotic factor, and, however, its role of cardiac microvascular IR injury and mitochondrial homeostasis remains unclear.MethodsThe cardiac microvascular IR injury was performed in WT mice and BI1 transgenic (BITG) mice. The alterations of microvascular structure and function were detected via electron microscope, immunohistochemistry and immunofluorescence in vivo. Cardiac microvascular endothelial cells were isolated form WT and BITG mice and underwent hypoxia/reoxygenation injury in vitro. Cellular viability and apoptosis were analyzed via MTT assay and caspase-3 activity. Mitochondrial function, morphology and apoptosis were detected. Signaling pathways were analyzed via inhibitor, siRNA and mutant plasmid.ResultsHerein, we demonstrated that Bax inhibitor 1 (BI1) was downregulated following cardiac microvascular IR injury, and its expression correlated negatively with microvascular collapse, endothelial cell apoptosis and mitochondrial damage. However, compared to wild-type mice, BI1 transgenic mice were actually protected from the acute microvascular injury and mitochondrial dysfunction. Functional studies illustrated that reintroduced BI1 directly interacted with and inhibited the Syk pathway, leading to the inactivation of Nox2. Subsequently, less Nox2 was associated with ROS downregulation, inhibiting Drp1 phosphorylated activation. Through repression of the Syk–Nox2–Drp1 signaling axis, BI1 strongly disrupted mitochondrial fission, abolishing mitochondrial apoptosis and thus sustaining endothelial cell viability.ConclusionsIn summary, our report illustrates that BI1 functions as a novel microvascular guardian in cardiac IR injury that operates via inhibition of the Syk–Nox2–Drp1-mitochondrial fission signaling axis. Thus, novel therapeutic strategies to regulate the balance between BI1 and mitochondrial fission could provide a survival advantage to microvasculature following IR stress.

Collaboration


Dive into the Shunying Hu's collaboration.

Top Co-Authors

Avatar

Chen Y

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Hao Zhou

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Pingjun Zhu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Feng Tian

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Ying Zhang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dandan Li

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Feng Cao

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Jin Wang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Qiang Ma

Chinese PLA General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge