Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuo Shang is active.

Publication


Featured researches published by Shuo Shang.


international conference on data engineering | 2013

On discovery of gathering patterns from trajectories

Kai Zheng; Yu Zheng; Nicholas Jing Yuan; Shuo Shang

The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications. In this light, we propose a novel concept, called gathering, which is a trajectory pattern modelling various group incidents such as celebrations, parades, protests, traffic jams and so on. A key observation is that these incidents typically involve large congregations of individuals, which form durable and stable areas with high density. Since the process of discovering gathering patterns over large-scale trajectory databases can be quite lengthy, we further develop a set of well thought out techniques to improve the performance. These techniques, including effective indexing structures, fast pattern detection algorithms implemented with bit vectors, and incremental algorithms for handling new trajectory arrivals, collectively constitute an efficient solution for this challenging task. Finally, the effectiveness of the proposed concepts and the efficiency of the approaches are validated by extensive experiments based on a real taxicab trajectory dataset.


international conference on data engineering | 2013

Towards efficient search for activity trajectories

Kai Zheng; Shuo Shang; Nicholas Jing Yuan; Yi Yang

The advances in location positioning and wireless communication technologies have led to a myriad of spatial trajectories representing the mobility of a variety of moving objects. While processing trajectory data with the focus of spatio-temporal features has been widely studied in the last decade, recent proliferation in location-based web applications (e.g., Foursquare, Facebook) has given rise to large amounts of trajectories associated with activity information, called activity trajectory. In this paper, we study the problem of efficient similarity search on activity trajectory database. Given a sequence of query locations, each associated with a set of desired activities, an activity trajectory similarity query (ATSQ) returns k trajectories that cover the query activities and yield the shortest minimum match distance. An order-sensitive activity trajectory similarity query (OATSQ) is also proposed to take into account the order of the query locations. To process the queries efficiently, we firstly develop a novel hybrid grid index, GAT, to organize the trajectory segments and activities hierarchically, which enables us to prune the search space by location proximity and activity containment simultaneously. In addition, we propose algorithms for efficient computation of the minimum match distance and minimum order-sensitive match distance, respectively. The results of our extensive empirical studies based on real online check-in datasets demonstrate that our proposed index and methods are capable of achieving superior performance and good scalability.


IEEE Transactions on Knowledge and Data Engineering | 2014

Online Discovery of Gathering Patterns over Trajectories

Kai Zheng; Yu Zheng; Nicholas Jing Yuan; Shuo Shang; Xiaofang Zhou

The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviors can convey valuable knowledge to a variety of critical applications. In this light, we propose a novel concept, called gathering, which is a trajectory pattern modeling various group incidents such as celebrations, parades, protests, traffic jams and so on. A key observation is that these incidents typically involve large congregations of individuals, which form durable and stable areas with high density. In this work, we first develop a set of novel techniques to tackle the challenge of efficient discovery of gathering patterns on archived trajectory dataset. Afterwards, since trajectory databases are inherently dynamic in many real-world scenarios such as traffic monitoring, fleet management and battlefield surveillance, we further propose an online discovery solution by applying a series of optimization schemes, which can keep track of gathering patterns while new trajectory data arrive. Finally, the effectiveness of the proposed concepts and the efficiency of the approaches are validated by extensive experiments based on a real taxicab trajectory dataset.


very large data bases | 2014

Personalized trajectory matching in spatial networks

Shuo Shang; Ruogu Ding; Kai Zheng; Christian S. Jensen; Panos Kalnis; Xiaofang Zhou

With the increasing availability of moving-object tracking data, trajectory search and matching is increasingly important. We propose and investigate a novel problem called personalized trajectory matching (PTM). In contrast to conventional trajectory similarity search by spatial distance only, PTM takes into account the significance of each sample point in a query trajectory. A PTM query takes a trajectory with user-specified weights for each sample point in the trajectory as its argument. It returns the trajectory in an argument data set with the highest similarity to the query trajectory. We believe that this type of query may bring significant benefits to users in many popular applications such as route planning, carpooling, friend recommendation, traffic analysis, urban computing, and location-based services in general. PTM query processing faces two challenges: how to prune the search space during the query processing and how to schedule multiple so-called expansion centers effectively. To address these challenges, a novel two-phase search algorithm is proposed that carefully selects a set of expansion centers from the query trajectory and exploits upper and lower bounds to prune the search space in the spatial and temporal domains. An efficiency study reveals that the algorithm explores the minimum search space in both domains. Second, a heuristic search strategy based on priority ranking is developed to schedule the multiple expansion centers, which can further prune the search space and enhance the query efficiency. The performance of the PTM query is studied in extensive experiments based on real and synthetic trajectory data sets.


international conference on data engineering | 2014

Stochastic skyline route planning under time-varying uncertainty

Bin Yang; Chenjuan Guo; Christian S. Jensen; Manohar Kaul; Shuo Shang

Different uses of a road network call for the consideration of different travel costs: in route planning, travel time and distance are typically considered, and green house gas (GHG) emissions are increasingly being considered. Further, travel costs such as travel time and GHG emissions are time-dependent and uncertain. To support such uses, we propose techniques that enable the construction of a multi-cost, time-dependent, uncertain graph (MTUG) model of a road network based on GPS data from vehicles that traversed the road network. Based on the MTUG, we define stochastic skyline routes that consider multiple costs and time-dependent uncertainty, and we propose efficient algorithms to retrieve stochastic skyline routes for a given source-destination pair and a start time. Empirical studies with three road networks in Denmark and a substantial GPS data set offer insight into the design properties of the MTUG and the efficiency of the stochastic skyline routing algorithms.


international conference on data engineering | 2015

Interactive Top-k Spatial Keyword queries

Kai Zheng; Han Su; Bolong Zheng; Shuo Shang; Jiajie Xu; Jiajun Liu; Xiaofang Zhou

Conventional top-k spatial keyword queries require users to explicitly specify their preferences between spatial proximity and keyword relevance. In this work we investigate how to eliminate this requirement by enhancing the conventional queries with interaction, resulting in Interactive Top-k Spatial Keyword (ITkSK) query. Having confirmed the feasibility by theoretical analysis, we propose a three-phase solution focusing on both effectiveness and efficiency. The first phase substantially narrows down the search space for subsequent phases by efficiently retrieving a set of geo-textual k-skyband objects as the initial candidates. In the second phase three practical strategies for selecting a subset of candidates are developed with the aim of maximizing the expected benefit for learning user preferences at each round of interaction. Finally we discuss how to determine the termination condition automatically and estimate the preference based on the users feedback. Empirical study based on real PoI datasets verifies our theoretical observation that the quality of top-k results in spatial keyword queries can be greatly improved through only a few rounds of interactions.


IEEE Transactions on Knowledge and Data Engineering | 2015

Discovery of Path Nearby Clusters in Spatial Networks

Shuo Shang; Kai Zheng; Christian S. Jensen; Bin Yang; Panos Kalnis; Guohe Li; Ji-Rong Wen

The discovery of regions of interest in large cities is an important challenge. We propose and investigate a novel query called the path nearby cluster (PNC) query that finds regions of potential interest (e.g., sightseeing places and commercial districts) with respect to a user-specified travel route. Given a set of spatial objects O (e.g., POIs, geo-tagged photos, or geo-tagged tweets) and a query route q, if a cluster c has high spatial-object density and is spatially close to q, it is returned by the query (a cluster is a circular region defined by a center and a radius). This query aims to bring important benefits to users in popular applications such as trip planning and location recommendation. Efficient computation of the PNC query faces two challenges: how to prune the search space during query processing, and how to identify clusters with high density effectively. To address these challenges, a novel collective search algorithm is developed. Conceptually, the search process is conducted in the spatial and density domains concurrently. In the spatial domain, network expansion is adopted, and a set of vertices are selected from the query route as expansion centers. In the density domain, clusters are sorted according to their density distributions and they are scanned from the maximum to the minimum. A pair of upper and lower bounds are defined to prune the search space in the two domains globally. The performance of the PNC query is studied in extensive experiments based on real and synthetic spatial data.


Geoinformatica | 2015

Planning unobstructed paths in traffic-aware spatial networks

Shuo Shang; Jiajun Liu; Kai Zheng; Hua Lu; Torben Bach Pedersen; Ji-Rong Wen

Route planning and recommendation have received significant attention in recent years. In this light, we study a novel problem of planning unobstructed paths in traffic-aware spatial networks (TAUP queries) to avoid potential traffic congestions. We propose two probabilistic TAUP queries: (1) a time-threshold query like “what is the path from the check-in desk to the flight SK 1217 with the minimum congestion probability to take at most 45 minutes?”, and (2) a probability-threshold query like “what is the fastest path from the check-in desk to the flight SK 1217 whose congestion probability is less than 20 %?”. These queries are mainly motivated by indoor space applications, but are also applicable in outdoor spaces. We believe that these queries are useful in some popular applications, such as planning unobstructed paths for VIP bags in airports and planning convenient routes for travelers. The TAUP queries are challenged by two difficulties: (1) how to model the traffic awareness in spatial networks practically, and (2) how to compute the TAUP queries efficiently under different query settings. To overcome these challenges, we construct a traffic-aware spatial network Gta(V, E) by analyzing uncertain trajectories of moving objects. Based on Gta(V, E), two efficient algorithms are developed to compute the TAUP queries. The performances of TAUP queries are verified by extensive experiments on real and synthetic spatial data.


very large data bases | 2017

Trajectory similarity join in spatial networks

Shuo Shang; Lisi Chen; Zhewei Wei; Christian S. Jensen; Kai Zheng; Panos Kalnis

The matching of similar pairs of objects, called similarity join, is fundamental functionality in data management. We consider the case of trajectory similarity join (TS-Join), where the objects are trajectories of vehicles moving in road networks. Thus, given two sets of trajectories and a threshold θ, the TS-Join returns all pairs of trajectories from the two sets with similarity above θ. This join targets applications such as trajectory near-duplicate detection, data cleaning, ridesharing recommendation, and traffic congestion prediction. With these applications in mind, we provide a purposeful definition of similarity. To enable efficient TS-Join processing on large sets of trajectories, we develop search space pruning techniques and take into account the parallel processing capabilities of modern processors. Specifically, we present a two-phase divide-and-conquer algorithm. For each trajectory, the algorithm first finds similar trajectories. Then it merges the results to achieve a final result. The algorithm exploits an upper bound on the spatiotemporal similarity and a heuristic scheduling strategy for search space pruning. The algorithms per-trajectory searches are independent of each other and can be performed in parallel, and the merging has constant cost. An empirical study with real data offers insight in the performance of the algorithm and demonstrates that is capable of outperforming a well-designed baseline algorithm by an order of magnitude.


international conference on data engineering | 2015

Bounded Quadrant System: Error-bounded trajectory compression on the go

Jiajun Liu; Kun Zhao; Philipp Sommer; Shuo Shang; Brano Kusy; Raja Jurdak

Long-term location tracking, where trajectory compression is commonly used, has gained high interest for many applications in transport, ecology, and wearable computing. However, state-of-the-art compression methods involve high space-time complexity or achieve unsatisfactory compression rate, leading to rapid exhaustion of memory, computation, storage and energy resources. We propose a novel online algorithm for error-bounded trajectory compression called the Bounded Quadrant System (BQS), which compresses trajectories with extremely small costs in space and time using convex-hulls. In this algorithm, we build a virtual coordinate system centered at a start point, and establish a rectangular bounding box as well as two bounding lines in each of its quadrants. In each quadrant, the points to be assessed are bounded by the convex-hull formed by the box and lines. Various compression error-bounds are therefore derived to quickly draw compression decisions without expensive error computations. In addition, we also propose a light version of the BQS version that achieves O(1) complexity in both time and space for processing each point to suit the most constrained computation environments. Furthermore, we briefly demonstrate how this algorithm can be naturally extended to the 3-D case. Using empirical GPS traces from flying foxes, cars and simulation, we demonstrate the effectiveness of our algorithm in significantly reducing the time and space complexity of trajectory compression, while greatly improving the compression rates of the state-of-the-art algorithms (up to 47%). We then show that with this algorithm, the operational time of the target resource-constrained hardware platform can be prolonged by up to 41%.

Collaboration


Dive into the Shuo Shang's collaboration.

Top Co-Authors

Avatar

Ji-Rong Wen

Renmin University of China

View shared research outputs
Top Co-Authors

Avatar

Kai Zheng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Panos Kalnis

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisi Chen

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Danhuai Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhewei Wei

Renmin University of China

View shared research outputs
Top Co-Authors

Avatar

Jiajun Liu

Renmin University of China

View shared research outputs
Top Co-Authors

Avatar

Kai Zheng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Kuien Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge