Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shurong Hou is active.

Publication


Featured researches published by Shurong Hou.


Molecular Pharmacology | 2011

Design, preparation, and characterization of high-activity mutants of human butyrylcholinesterase specific for detoxification of cocaine.

Liu Xue; Mei-Chuan Ko; Min Tong; Wenchao Yang; Shurong Hou; Lei Fang; Junjun Liu; Fang Zheng; James H. Woods; Hsin-Hsiung Tai; Chang-Guo Zhan

Cocaine is a widely abused drug without a U.S. Food and Drug Administration-approved medication. There is a recognized, promising anticocaine medication to accelerate cocaine metabolism, producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway [i.e., cocaine hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma]. An ideal, therapeutically valuable mutant of human BChE should have not only a significantly improved catalytic activity against (−)-cocaine but also certain selectivity for (−)-cocaine over neurotransmitter acetylcholine (ACh), such that one would not expect systemic administration of the BChE mutant to interrupt cholinergic transmission. The present study accounting for the mutation-caused changes of the catalytic activities of BChE against both (−)-cocaine and ACh by means of molecular modeling and site-directed mutagenesis has led to identification of three BChE mutants that have not only a considerably improved catalytic efficiency against (−)-cocaine but also the desirable selectivity for (−)-cocaine over ACh. Two representative BChE mutants have been confirmed to be potent in actual protection of mice from acute toxicity (convulsion and lethality) of a lethal dose of cocaine (180 mg/kg). Pretreatment with the BChE mutant (i.e., 1 min before cocaine administration) dose-dependently protected mice against cocaine-induced convulsions and lethality. In particular, all mice pretreated with the mutant (e.g., 0.02 mg or more of A199S/F227A/S287G/A328W/E441D BChE) survived. The in vivo data reveal the primary factor (i.e., the relative catalytic efficiency), determining the efficacy in practical protection of mice from the acute cocaine toxicity and future direction for further improving the efficacy of the enzyme in the cocaine overdose treatment.


Biochemistry | 2010

Design of high-activity mutants of human butyrylcholinesterase against (-)-cocaine: structural and energetic factors affecting the catalytic efficiency.

Fang Zheng; Wenchao Yang; Liu Xue; Shurong Hou; Junjun Liu; Chang-Guo Zhan

The present study was aimed to explore the correlation between the protein structure and catalytic efficiency of butyrylcholinesterase (BChE) mutants against (-)-cocaine by modeling the rate-determining transition state (TS1), i.e., the transition state for the first step of chemical reaction process, of (-)-cocaine hydrolysis catalyzed by various mutants of human BChE in comparison with the wild type. Molecular modeling of the TS1 structures revealed that mutations on certain nonactive site residues can indirectly affect the catalytic efficiency of the enzyme against (-)-cocaine through enhancing or weakening the overall hydrogen bonding between the carbonyl oxygen of (-)-cocaine benzoyl ester and the oxyanion hole of the enzyme. Computational insights and predictions were supported by the catalytic activity data obtained from wet experimental tests on the mutants of human BChE, including five new mutants reported for the first time. The BChE mutants with at least ∼1000-fold improved catalytic efficiency against (-)-cocaine compared to the wild-type BChE are all associated with the TS1 structures having stronger overall hydrogen bonding between the carbonyl oxygen of (-)-cocaine benzoyl ester and the oxyanion hole of the enzyme. The combined computational and experimental data demonstrate a reasonable correlation relationship between the hydrogen-bonding distances in the TS1 structure and the catalytic efficiency of the enzyme against (-)-cocaine.


Nature Communications | 2014

A highly efficient cocaine-detoxifying enzyme obtained by computational design

Fang Zheng; Liu Xue; Shurong Hou; Junjun Liu; Max Zhan; Wenchao Yang; Chang-Guo Zhan

Compared to naturally occurring enzymes, computationally designed enzymes are usually much less efficient, with their catalytic activities being more than six orders of magnitude below the diffusion limit. Here we use a two-step computational design approach, combined with experimental work, to design a highly efficient cocaine hydrolising enzyme. We engineer E30-6 from human butyrylcholinesterase (BChE), which is specific for cocaine hydrolysis, and obtain a much higher catalytic efficiency for cocaine conversion than for conversion of the natural BChE substrate, acetylcholine (ACh). The catalytic efficiency of E30-6 for cocaine hydrolysis is comparable to that of the most efficient known naturally-occurring hydrolytic enzyme, acetylcholinesterase, the catalytic activity of which approaches the diffusion limit. We further show that E30-6 can protect mice from a subsequently administered lethal dose of cocaine, suggesting the enzyme may have therapeutic potential in the setting of cocaine detoxification or cocaine abuse.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Long-acting cocaine hydrolase for addiction therapy.

Xiabin Chen; Liu Xue; Shurong Hou; Zhenyu Jin; Ting Zhang; Fang Zheng; Chang-Guo Zhan

Significance It is essential for a truly effective addiction medication to block the drugs physiological effects effectively without affecting normal functions of the brain and other critical organs such as the heart and while still preventing relapse during abstinence. Most popularly used pharmacological approaches to addiction treatment, including all currently available addiction therapies, either affect normal functions of brain receptors/transporters or are unable to prevent relapse. The long-acting enzyme approach may provide a novel, truly promising therapy capable of effectively blocking the physiological and toxic effects of cocaine without affecting normal functions of the brain and other critical organs and prevent relapse during abstinence. New insights obtained in this study also may be valuable in guiding development of other therapeutic proteins. Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Administration-approved medication. An ideal anticocaine medication would accelerate cocaine metabolism, producing biologically inactive metabolites by administration of an efficient cocaine-specific exogenous enzyme. Our recent studies have led to the discovery of the desirable, highly efficient cocaine hydrolases (CocHs) that can efficiently detoxify and inactivate cocaine without affecting normal functions of the CNS. Preclinical and clinical data have demonstrated that these CocHs are safe for use in humans and are effective for accelerating cocaine metabolism. However, the actual therapeutic use of a CocH in cocaine addiction treatment is limited by its short biological half-life (e.g., 8 h or shorter in rats). Here we demonstrate a novel CocH form, a catalytic antibody analog, which is a fragment crystallizable (Fc)-fused CocH dimer (CocH-Fc) constructed by using CocH to replace the Fab region of human IgG1. The CocH-Fc not only has a high catalytic efficiency against cocaine but also, like an antibody, has a considerably longer biological half-life (e.g., ∼107 h in rats). A single dose of CocH-Fc was able to accelerate cocaine metabolism in rats even after 20 d and thus block cocaine-induced hyperactivity and toxicity for a long period. Given the general observation that the biological half-life of a protein drug is significantly longer in humans than in rodents, the CocH-Fc reported in this study could allow dosing once every 2–4 wk, or longer, for treatment of cocaine addiction in humans.


ACS Chemical Biology | 2014

Rational Design, Preparation, and Characterization of a Therapeutic Enzyme Mutant with Improved Stability and Function for Cocaine Detoxification

Lei Fang; K. Martin Chow; Shurong Hou; Liu Xue; Xiabin Chen; David W. Rodgers; Fang Zheng; Chang-Guo Zhan

Cocaine esterase (CocE) is known as the most efficient natural enzyme for cocaine hydrolysis. The major obstacle to the clinical application of wild-type CocE is the thermoinstability with a half-life of only ∼12 min at 37 °C. The previously designed T172R/G173Q mutant (denoted as enzyme E172–173) with an improved in vitro half-life of ∼6 h at 37 °C is currently in clinical trial Phase II for cocaine overdose treatment. Through molecular modeling and dynamics simulation, we designed and characterized a promising new mutant of E172–173 with extra L196C/I301C mutations (denoted as enzyme E196–301) to produce cross-subunit disulfide bonds that stabilize the dimer structure. The cross-subunit disulfide bonds were confirmed by X-ray diffraction. The designed L196C/I301C mutations have not only considerably extended the in vitro half-life at 37 °C to >100 days, but also significantly improved the catalytic efficiency against cocaine by ∼150%. In addition, the thermostable E196–301 can be PEGylated to significantly prolong the residence time in mice. The PEGylated E196–301 can fully protect mice from a lethal dose of cocaine (180 mg/kg, LD100) for at least 3 days, with an average protection time of ∼94h. This is the longest in vivo protection of mice from the lethal dose of cocaine demonstrated within all studies using an exogenous enzyme reported so far. Hence, E196–301 may be developed to become a more valuable therapeutic enzyme for cocaine abuse treatment, and it demonstrates that a general design strategy and protocol to simultaneously improve both the stability and function are feasible for rational protein drug design.


Organic and Biomolecular Chemistry | 2013

Substrate selectivity of high-activity mutants of human butyrylcholinesterase.

Shurong Hou; Liu Xue; Wenchao Yang; Lei Fang; Fang Zheng; Chang-Guo Zhan

Cocaine is one of the most addictive drugs, and there is still no FDA (Food and Drug Administration)-approved medication specific for cocaine abuse. A promising therapeutic strategy is to accelerate cocaine metabolism, producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. cocaine hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma. However, the native BChE has a low catalytic efficiency against the abused cocaine, i.e. (-)-cocaine. Our recently designed and discovered A199S/F227A/S287G/A328W/Y332G mutant and other mutants of human BChE have a considerably improved catalytic efficiency against (-)-cocaine. In the present study, we carried out both computational modeling and experimental kinetic analysis on the catalytic activities of these promising new BChE mutants against other known substrates, including neurotransmitter acetylcholine (ACh), acetylthiocholine (ATC), butyrylthiocholine (BTC), and (+)-cocaine, in comparison with the corresponding catalytic activity against (-)-cocaine. Both the computational modeling and kinetic analysis have consistently revealed that all the examined amino acid mutations only considerably improve the catalytic efficiency of human BChE against (-)-cocaine, without significantly improving the catalytic efficiency of the enzyme against any of the other substrates examined. In particular, all the examined BChE mutants have a slightly lower catalytic efficiency against neurotransmitter ACh compared to the wild-type BChE. This observation gives us confidence in developing an anti-cocaine enzyme therapy by using one of these BChE mutants, particularly the A199S/F227A/S287G/A328W/Y332G mutant.


Chemico-Biological Interactions | 2013

Catalytic activities of a cocaine hydrolase engineered from human butyrylcholinesterase against (+)- and (-)-cocaine.

Liu Xue; Shurong Hou; Wenchao Yang; Lei Fang; Fang Zheng; Chang-Guo Zhan

It can be argued that an ideal anti-cocaine medication would be one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma. However, wild-type BChE has a low catalytic efficiency against naturally occurring (-)-cocaine. Interestingly, wild-type BChE has a much higher catalytic activity against unnatural (+)-cocaine. According to available positron emission tomography (PET) imaging analysis using [(11)C](-)-cocaine and [(11)C](+)-cocaine tracers in human subjects, only [(11)C](-)-cocaine was observed in the brain, whereas no significant [(11)C](+)-cocaine signal was observed in the brain. The available PET data imply that an effective therapeutic enzyme for treatment of cocaine abuse could be an exogenous cocaine-metabolizing enzyme with a catalytic activity against (-)-cocaine comparable to that of wild-type BChE against (+)-cocaine. Our recently designed A199S/F227A/S287G/A328 W/Y332G mutant of human BChE has a considerably improved catalytic efficiency against (-)-cocaine and has been proven active in vivo. In the present study, we have characterized the catalytic activities of wild-type BChE and the A199S/F227A/S287G/A328 W/Y332G mutant against both (+)- and (-)-cocaine at the same time under the same experimental conditions. Based on the obtained kinetic data, the A199S/F227A/S287G/A328 W/Y332G mutant has a similarly high catalytic efficiency (kcat/KM) against (+)- and (-)-cocaine, and indeed has a catalytic efficiency (k(cat/)K(M) = 1.84 × 10(9) M(-1) min(-1)) against (-)-cocaine comparable to that (k(cat)/K(M) = 1.37 × 10(9) M(-1) min(-1)) of wild-type BChE against (+)-cocaine. Thus, the mutant may be used to effectively prevent (-)-cocaine from entering brain and producing physiological effects in the enzyme-based treatment of cocaine abuse.


Biochemical Journal | 2014

Kinetic characterization of high-activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine

Max Zhan; Shurong Hou; Chang-Guo Zhan; Fang Zheng

It has been known that cocaine produces its toxic and physiological effects through not only cocaine itself, but also norcocaine formed from cocaine oxidation catalysed by microsomal CYP (cytochrome P450) 3A4 in the human liver. The catalytic parameters (kcat and Km) of human BChE (butyrylcholinesterase) and its three mutants (i.e. A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/E441D and A199S/F227A/S287G/A328W/Y332G) for norcocaine have been characterized in the present study for the first time and compared with those for cocaine. On the basis of the obtained kinetic data, wild-type human BChE has a significantly lower catalytic activity for norcocaine (kcat=2.8 min(-1), Km=15 μM and kcat/Km=1.87 × 10(5) M(-1)·min(-1)) compared with its catalytic activity for (-)-cocaine. The BChE mutants examined in the present study have considerably improved catalytic activities against both cocaine and norcocaine compared with the wild-type enzyme. Within the enzymes examined in the present study, the A199S/F227A/S287G/A328W/Y332G mutant (CocH3) is identified as the most efficient enzyme for hydrolysing both cocaine and norcocaine. CocH3 has a 1080-fold improved catalytic efficiency for norcocaine (kcat=2610 min(-1), Km=13 μM and kcat/Km=2.01 × 10(8) M(-1)·min(-1)) and a 2020-fold improved catalytic efficiency for cocaine. It has been demonstrated that CocH3 as an exogenous enzyme can rapidly metabolize norcocaine, in addition to cocaine, in rats. Further kinetic modelling has suggested that CocH3 with an identical concentration with that of the endogenous BChE in human plasma can effectively eliminate both cocaine and norcocaine in a simplified kinetic model of cocaine abuse.


Biochemical Journal | 2014

Kinetic characterization of human butyrylcholinesterase mutants for the hydrolysis of cocaethylene.

Shurong Hou; Max Zhan; Xirong Zheng; Chang-Guo Zhan; Fang Zheng

It is known that the majority of cocaine users also consume alcohol. Alcohol can react with cocaine to produce a significantly more cytotoxic compound, cocaethylene. Hence a truly valuable cocaine-metabolizing enzyme as treatment for cocaine abuse/overdose should be efficient for not only cocaine itself, but also cocaethylene. The catalytic parameters (kcat and KM) of human BChE (butyrylcholinesterase) and two mutants (known as cocaine hydrolases E14-3 and E12-7) for cocaethylene are characterized in the present study, for the first time, in comparison with those for cocaine. On the basis of the obtained kinetic data, wild-type human BChE has a lower catalytic activity for cocaethylene (kcat=3.3 min(-1), KM=7.5 μM and kcat/KM=4.40 × 10(5) M(-1)·min(-1)) compared with its catalytic activity for (-)-cocaine. E14-3 and E12-7 have a considerably improved catalytic activity against cocaethylene compared with the wild-type BChE. E12-7 is identified as the most efficient enzyme for hydrolysing cocaethylene in addition to its high activity for (-)-cocaine. E12-7 has an 861-fold improved catalytic efficiency for cocaethylene (kcat=3600 min(-1), KM=9.5 μM and kcat/KM=3.79 × 10(8) M(-1)·min(-1)). It has been demonstrated that E12-7 as an exogenous enzyme can indeed rapidly metabolize cocaethylene in rats. Further kinetic modelling has suggested that E12-7 with an identical concentration as that of the endogenous BChE in human plasma can effectively eliminate (-)-cocaine, cocaethylene and norcocaine in simplified kinetic models of cocaine abuse and overdose associated with the concurrent use of cocaine and alcohol.


Chemico-Biological Interactions | 2014

Amino-acid mutations to extend the biological half-life of a therapeutically valuable mutant of human butyrylcholinesterase.

Lei Fang; Shurong Hou; Liu Xue; Fang Zheng; Chang-Guo Zhan

Cocaine is a widely abused and addictive drug without an FDA-approved medication. Our recently designed and discovered cocaine hydrolase, particularly E12-7 engineered from human butyrylcholinesterase (BChE), has the promise of becoming a valuable cocaine abuse treatment. An ideal anti-cocaine therapeutic enzyme should have not only a high catalytic efficiency against cocaine, but also a sufficiently long biological half-life. However, recombinant human BChE and the known BChE mutants have a much shorter biological half-life compared to the native human BChE. The present study aimed to extend the biological half-life of the cocaine hydrolase without changing its high catalytic activity against cocaine. Our strategy was to design possible amino-acid mutations that can introduce cross-subunit disulfide bond(s) and, thus, change the distribution of the oligomeric forms and extend the biological half-life. Three new BChE mutants (E364-532, E377-516, and E535) were predicted to have a more stable dimer structure with the desirable cross-subunit disulfide bond(s) and, therefore, a different distribution of the oligomeric forms and a prolonged biological half-life. The rational design was followed by experimental tests in vitro and in vivo, confirming that the rationally designed new BChE mutants, i.e. E364-532, E377-516, and E535, indeed had a remarkably different distribution of the oligomeric forms and prolonged biological half-life in rats from ∼7 to ∼13h without significantly changing the catalytic activity against (-)-cocaine. This is the first demonstration that rationally designed amino-acid mutations can significantly prolong the biological half-life of a high-activity enzyme without significantly changing the catalytic activity.

Collaboration


Dive into the Shurong Hou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Zheng

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Liu Xue

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Lei Fang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Xiabin Chen

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Zhan

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Junjun Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge