Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuxing Zhang is active.

Publication


Featured researches published by Shuxing Zhang.


Journal of the National Cancer Institute | 2012

Effect of KRAS Oncogene Substitutions on Protein Behavior: Implications for Signaling and Clinical Outcome

Nathan T. Ihle; Lauren Averett Byers; Edward S. Kim; Pierre Saintigny; Jiun-Kae Jack Lee; George R. Blumenschein; Anne Tsao; Suyu Liu; Jill E. Larsen; Jing Wang; Lixia Diao; Kevin Coombes; Lu Chen; Shuxing Zhang; Mena Abdelmelek; Ximing Tang; Vassiliki Papadimitrakopoulou; John D. Minna; Scott M. Lippman; Waun Ki Hong; Roy S. Herbst; Ignacio I. Wistuba; John V. Heymach; Garth Powis

BACKGROUND Mutations in the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) play a critical role in cancer cell growth and resistance to therapy. Most mutations occur at codons 12 and 13. In colorectal cancer, the presence of any mutant KRas amino acid substitution is a negative predictor of patient response to targeted therapy. However, in non-small cell lung cancer (NSCLC), the evidence that KRAS mutation is a predictive factor is conflicting. METHODS We used data from a molecularly targeted clinical trial for 215 patients with tissues available out of 268 evaluable patients with refractory NSCLC to examine associations between specific mutant KRas proteins and progression-free survival and tumor gene expression. Transcriptome microarray studies of patient tumor samples and reverse-phase protein array studies of a panel of 67 NSCLC cell lines with known substitutions in KRas and in immortalized human bronchial epithelial cells stably expressing different mutant KRas proteins were used to investigate signaling pathway activation. Molecular modeling was used to study the conformations of wild-type and mutant KRas proteins. Kaplan-Meier curves and Cox regression were used to analyze survival data. All statistical tests were two-sided. RESULTS Patients whose tumors had either mutant KRas-Gly12Cys or mutant KRas-Gly12Val had worse progression-free survival compared with patients whose tumors had other mutant KRas proteins or wild-type KRas (P = .046, median survival = 1.84 months) compared with all other mutant KRas (median survival = 3.35 months) or wild-type KRas (median survival = 1.95 months). NSCLC cell lines with mutant KRas-Gly12Asp had activated phosphatidylinositol 3-kinase (PI-3-K) and mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) signaling, whereas those with mutant KRas-Gly12Cys or mutant KRas-Gly12Val had activated Ral signaling and decreased growth factor-dependent Akt activation. Molecular modeling studies showed that different conformations imposed by mutant KRas may lead to altered association with downstream signaling transducers. CONCLUSIONS Not all mutant KRas proteins affect patient survival or downstream signaling in a similar way. The heterogeneous behavior of mutant KRas proteins implies that therapeutic interventions may need to take into account the specific mutant KRas expressed by the tumor.


Molecular Cancer Therapeutics | 2008

Discovery of a novel class of AKT pleckstrin homology domain inhibitors

Daruka Mahadevan; Garth Powis; Eugene A. Mash; Benjamin George; Vijay Gokhale; Shuxing Zhang; Kishore Shakalya; Lei Du-Cuny; Margareta Berggren; M. Ahad Ali; Umasish Jana; Nathan T. Ihle; Sylvestor A. Moses; Chloe Franklin; Satya Narayan; Nikhil V. Shirahatti; Emmanuelle J. Meuillet

AKT, a phospholipid-binding serine/threonine kinase, is a key component of the phosphoinositide 3-kinase cell survival signaling pathway that is aberrantly activated in many human cancers. Many attempts have been made to inhibit AKT; however, selectivity remains to be achieved. We have developed a novel strategy to inhibit AKT by targeting the pleckstrin homology (PH) domain. Using in silico library screening and interactive molecular docking, we have identified a novel class of non–lipid-based compounds that bind selectively to the PH domain of AKT, with “in silico” calculated KD values ranging from 0.8 to 3.0 μmol/L. In order to determine the selectivity of these compounds for AKT, we used surface plasmon resonance to measure the binding characteristics of the compounds to the PH domains of AKT1, insulin receptor substrate-1, and 3-phosphoinositide–dependent protein kinase 1. There was excellent correlation between predicted in silico and measured in vitro KDs for binding to the PH domain of AKT, which were in the range 0.4 to 3.6 μmol/L. Some of the compounds exhibited PH domain–binding selectivity for AKT compared with insulin receptor substrate-1 and 3-phosphoinositide–dependent protein kinase 1. The compounds also inhibited AKT in cells, induced apoptosis, and inhibited cancer cell proliferation. In vivo, the lead compound failed to achieve the blood concentrations required to inhibit AKT in cells, most likely due to rapid metabolism and elimination, and did not show antitumor activity. These results show that these compounds are the first small molecules selectively targeting the PH domain of AKT. [Mol Cancer Ther 2008;7(9):2621–32]


Molecular Cancer Therapeutics | 2010

Molecular Pharmacology and Antitumor Activity of PHT-427, a Novel Akt/Phosphatidylinositide-Dependent Protein Kinase 1 Pleckstrin Homology Domain Inhibitor

Emmanuelle J. Meuillet; Song Zuohe; Robert Lemos; Nathan T. Ihle; John Kingston; Ryan Watkins; Sylvestor A. Moses; Shuxing Zhang; Lei Du-Cuny; Roy S. Herbst; Jörg J. Jacoby; Li Li Zhou; Ali M. Ahad; Eugene A. Mash; D. Lynn Kirkpatrick; Garth Powis

Phosphatidylinositol 3-kinase/phosphatidylinositide-dependent protein kinase 1 (PDPK1)/Akt signaling plays a critical role in activating proliferation and survival pathways within cancer cells. We report the molecular pharmacology and antitumor activity of PHT-427, a compound designed to bind to the pleckstrin homology (PH) binding domain of signaling molecules important in cancer. Although originally designed to bind the PH domain of Akt, we now report that PHT-427 also binds to the PH domain of PDPK1. A series of PHT-427 analogues with variable C-4 to C-16 alkyl chain length were synthesized and tested. PHT-427 itself (C-12 chain) bound with the highest affinity to the PH domains of both PDPK1 and Akt. PHT-427 inhibited Akt and PDPK1 signaling and their downstream targets in sensitive but not resistant cells and tumor xenografts. When given orally, PHT-427 inhibited the growth of human tumor xenografts in immunodeficient mice, with up to 80% inhibition in the most sensitive tumors, and showed greater activity than analogues with C4, C6, or C8 alkyl chains. Inhibition of PDPK1 was more closely correlated to antitumor activity than Akt inhibition. Tumors with PIK3CA mutation were the most sensitive, and K-Ras mutant tumors were the least sensitive. Combination studies showed that PHT-427 has greater than additive antitumor activity with paclitaxel in breast cancer and with erlotinib in non–small cell lung cancer. When given >5 days, PHT-427 caused no weight loss or change in blood chemistry. Thus, we report a novel PH domain binding inhibitor of PDPK1/Akt signaling with significant in vivo antitumor activity and minimal toxicity. Mol Cancer Ther; 9(3); 706–17


Journal of Chemical Information and Modeling | 2011

A Critical Assessment of Combined Ligand- and Structure-Based Approaches to hERG Channel Blocker Modeling

Lei Du-Cuny; Lu Chen; Shuxing Zhang

Blockade of human ether-à-go-go related gene (hERG) channel prolongs the duration of the cardiac action potential and is a common reason for drug failure in preclinical safety trials. Therefore, it is of great importance to develop robust in silico tools to predict potential hERG blockers in the early stages of drug discovery and development. Herein we described comprehensive approaches to assess the discrimination of hERG-active and -inactive compounds by combining quantitative structure-activity relationship (QSAR) modeling, pharmacophore analysis, and molecular docking. Our consensus models demonstrated high-predictive capacity and improved enrichment and could correctly classify 91.8% of 147 hERG blockers from 351 inactives. To further enhance our modeling effort, hERG homology models were constructed, and molecular docking studies were conducted, resulting in high correlations (R² = 0.81) between predicted and experimental pIC₅₀s. We expect our unique models can be applied to efficient screening for hERG blockades, and our extensive understanding of the hERG-inhibitor interactions will facilitate the rational design of drugs devoid of hERG channel activity and hence with reduced cardiac toxicities.


Pharmaceutical patent analyst | 2013

Targeting inflammation: multiple innovative ways to reduce prostaglandin E2

Jessica K Norberg; Earlphia Sells; Hui-Hua Chang; Srinivas R Alla; Shuxing Zhang; Emmanuelle J. Meuillet

The PGE2 pathway is important in inflammation-driven diseases and specific targeting of the inducible mPGES-1 is warranted due to the cardiovascular problems associated with the long-term use of COX-2 inhibitors. This review focuses on patents issued on methods of measuring mPGES-1 activity, on drugs targeting mPGES-1 and on other modulators of free extracellular PGE2 concentration. Perspectives and conclusions regarding the status of these drugs are also presented. Importantly, no selective inhibitors targeting mPGES-1 have been identified and, despite the high number of published patents, none of these drugs have yet made it to clinical trials.


Bioorganic & Medicinal Chemistry | 2009

Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain

Lei Du-Cuny; Zuohe Song; Sylvestor A. Moses; Garth Powis; Eugene A. Mash; Emmanuelle J. Meuillet; Shuxing Zhang

Computational modeling continues to play an important role in novel therapeutics discovery and development. In this study, we have investigated the use of in silico approaches to develop inhibitors of the pleckstrin homology (PH) domain of AKT (protein kinase B). Various docking/scoring schemes have been evaluated, and the best combination was selected to study the system. Using this strategy, two hits were identified and their binding behaviors were investigated. Robust and predictive QSAR models were built using the k nearest neighbor (kNN) method to study their cellular permeability. Based on our in silico results, long flexible aliphatic tails were proposed to improve the Caco-2 penetration without affecting the binding mode. The modifications enhanced the AKT inhibitory activity of the compounds in cell-based assays, and increased their activity as in vivo antitumor testing.


Recent Patents on Anti-cancer Drug Discovery | 2011

Recent Development of Anticancer Therapeutics Targeting Akt

John Kenneth Morrow; Lei Du-Cuny; Lu Chen; Emmanuelle J. Meuillet; Eugene A. Mash; Garth Powis; Shuxing Zhang

The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches.


Bioorganic & Medicinal Chemistry | 2011

Development of sulfonamide AKT PH domain inhibitors.

Ali M. Ahad; Song Zuohe; Lei Du-Cuny; Sylvestor A. Moses; Li Li Zhou; Shuxing Zhang; Garth Powis; Emmanuelle J. Meuillet; Eugene A. Mash

Disruption of the phosphatidylinositol 3-kinase/AKT signaling pathway can lead to apoptosis in cancer cells. Previously we identified a lead sulfonamide that selectively bound to the pleckstrin homology (PH) domain of AKT and induced apoptosis when present at low micromolar concentrations. To examine the effects of structural modification, a set of sulfonamides related to the lead compound was designed, synthesized, and tested for binding to the expressed PH domain of AKT using a surface plasmon resonance-based competitive binding assay. Cellular activity was determined by means of an assay for pAKT production and a cell killing assay using BxPC-3 cells. The most active compounds in the set are lipophilic and possess an aliphatic chain of the proper length. Results were interpreted with the aid of computational modeling. This paper represents the first structure-activity relationship (SAR) study of a large family of AKT PH domain inhibitors. Information obtained will be used in the design of the next generation of inhibitors of AKT PH domain function.


Nature Medicine | 2018

Mechanisms and clinical activity of an EGFR and HER2 exon 20–selective kinase inhibitor in non–small cell lung cancer

Jacqulyne P. Robichaux; Yasir Elamin; Zhi Tan; Brett W. Carter; Shuxing Zhang; Shengwu Liu; Shuai Li; Ting Chen; Alissa Poteete; Adriana Estrada-Bernal; Anh T. Le; Anna Truini; Monique B. Nilsson; Huiying Sun; Emily Roarty; Sarah B. Goldberg; Julie R. Brahmer; Mehmet Altan; Charles Lu; Vassiliki Papadimitrakopoulou; Katerina Politi; Robert C. Doebele; Kwok-Kin Wong; John V. Heymach

Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non–small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations.Poziotinib is a candidate inhibitor for a subset of EGFR or HER2 mutant non–small cell lung cancers that lack effective therapy.


Scientific Reports | 2016

Comprehensive modeling and discovery of mebendazole as a novel TRAF2- and NCK-interacting kinase inhibitor

Zhi Tan; Lu Chen; Shuxing Zhang

TRAF2- and NCK-interacting kinase (TNIK) represents one of the crucial targets for Wnt-activated colorectal cancer. In this study, we curated two datasets and conducted a comprehensive modeling study to explore novel TNIK inhibitors with desirable biopharmaceutical properties. With Dataset I, we derived Comparative Molecular Similarity Indices Analysis (CoMSIA) and variable-selection k-nearest neighbor models, from which 3D-molecular fields and 2D-descriptors critical for the TNIK inhibitor activity were revealed. Based on Dataset II, predictive CoMSIA-SIMCA (Soft Independent Modelling by Class Analogy) models were obtained and employed to screen 1,448 FDA-approved small molecule drugs. Upon experimental evaluations, we discovered that mebendazole, an approved anthelmintic drug, could selectively inhibit TNIK kinase activity with a dissociation constant Kd = ~1 μM. The subsequent CoMSIA and kNN analyses indicated that mebendazole bears the favorable molecular features that are needed to bind and inhibit TNIK.

Collaboration


Dive into the Shuxing Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John V. Heymach

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lei Du-Cuny

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zhi Tan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Monique B. Nilsson

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassiliki Papadimitrakopoulou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ignacio I. Wistuba

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge