Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuyan Xue is active.

Publication


Featured researches published by Shuyan Xue.


Analytica Chimica Acta | 2015

A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene–molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification

Pei Jing; Huayu Yi; Shuyan Xue; Yaqin Chai; Ruo Yuan; Wenju Xu

In the present study, with the aggregated advantages of graphene and molybdenum disulfide (MoS2), we prepared poly(diallyldimethylammonium chloride)-graphene/molybdenum disulfide (PDDA-G-MoS2) nanocomposites with flower-like structure, large surface area and excellent conductivity. Furthermore, an advanced sandwich-type electrochemical assay for sensitive detection of thrombin (TB) was fabricated using palladium nanoparticles decorated PDDA-G-MoS2 (PdNPs/PDDA-G-MoS2) as nanocarriers, which were functionalized by hemin/G-quadruplex, glucose oxidase (GOD), and toluidine blue (Tb) as redox probes. The signal amplification strategy was achieved as follows: Firstly, the immobilized GOD could effectively catalyze the oxidation of glucose to gluconolactone, coupling with the reduction of the dissolved oxygen to H2O2. Then, both PdNPs and hemin/G-quadruplex acting as hydrogen peroxide (HRP)-mimicking enzyme could further catalyze the reduction of H2O2, resulting in significant electrochemical signal amplification. So the proposed aptasensor showed high sensitivity with a wide dynamic linear range of 0.0001 to 40 nM and a relatively low detection limit of 0.062 pM for TB determination. The strategy showed huge potential of application in protein detection and disease diagnosis.


Biosensors and Bioelectronics | 2016

Hemin on graphene nanosheets functionalized with flower-like MnO2 and hollow AuPd for the electrochemical sensing lead ion based on the specific DNAzyme.

Shuyan Xue; Pei Jing; Wenju Xu

Herein, integrated with DNAzyme highly specific to metal ions, hemin@reduced graphene oxide (hemin@rGO) functionalized with flower-like MnO2 and hollow AuPd (hAuPd-fMnO2-hemin@rGO) was used as electroactive probe and electrocatalyst to construct a universal platform for metal ion detection (lead ion Pb(2+) as the model). The proposed strategy with generality was mainly based on two aspects. Firstly, the designed probe not only showed high stability and excellent peroxidase-like activity originating from hemin, fMnO2 and hAuPd, but also possessed intrinsic redox performance from hemin, which resulted in the promotion of electron transfer and the enhancement of the response signal readout. Secondly, due to the introduction of Pb(2+), Pb(2+)-dependent DNAzyme bound in the electrode surface could be specifically identified and cleaved by Pb(2+), and the remained fragment (its supplementary sequence is a single-strand DNA S3) captured the nanocomposites S3-hAuPd-fMnO2-hemin@rGO by the hybridization reaction. Therefore, combined the cooperative catalysis of fMnO2, hAuPd and hemin to H2O2 reduction with highly specific interaction of Pb(2+)-dependent DNAzyme, the proposed Pb(2+) biosensor showed significant improvement of electrochemical analytical performance, which was involved in wide dynamic response in the range of 0.1pM-200nM, low detection limit of 0.034pM, high sensitivity and high specificity. This could facilitate the universal strategy to be a promising method for detection of other metal ions, only changing the corresponding DNAzyme specific to them.


Biosensors and Bioelectronics | 2017

Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy.

Jianmin Zhao; Pei Jing; Shuyan Xue; Wenju Xu

In this work, a sensitive electrochemical biosensing to Pb2+ was proposed based on the high specificity of DNAzymes to Pb2+. The response signal was efficiently amplified by the catalytic hairpin assembly induced by strand replacement reaction and the formation of dendritic structure DNA (DSDNA) by layer-by-layer assembly. Firstly, in the presence of Pb2+, the substrate strand (S1) of the Pb2+-specific DNAzymes was specifically cleaved by Pb2+. Secondly, one of the two fragments (rS1) introduced into the electrode surface was hybridized with a hairpin DNA (H1) and further replaced by another hairpin DNA (H2) by the hybridization reaction of H1 with H2. The released rS1 then induced the next hybridization with H1. After repeated cycles, the catalytic recycling assembly of H2 with H1 was completed. Thirdly, two bioconjugates of Pt@Pd nanocages (Pt@PdNCs) labeled with DNA S3/S4 and electroactive toluidine blue (Tb) (Tb-S3-Pt@PdNCs and Tb-S4-Pt@PdNCs) were captured onto the resultant electrode surface through the hybridization of S3 and H2, S3 and S4, resulting in the formation of DSDNA triggered by layer-by-layer assembly. This formed DSDNA greatly facilitated the immobilization of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrin (MnTMPyP) as mimicking enzyme. Under the synergistic catalysis of Pt@PdNCs and MnTMPyP to H2O2 reduction, the effective signal amplification of the developed Pb2+ biosensor was achieved. As a result, the sensitive detection of the proposed electrochemical strategy for Pb2+ was greatly improved in the range of 0.1pM-200nM with a detection limit of 0.033pM.


RSC Advances | 2015

A ‘signal on-off’ electrochemical peptide biosensor for matrix metalloproteinase 2 based on target induced cleavage of a peptide

Pei Jing; Huayu Yi; Shuyan Xue; Ruo Yuan; Wenju Xu

In this work, a ‘signal on-off’ electrochemical peptide biosensor was developed for the determination of matrix metalloproteinase 2 (MMP-2) on the basis of target induced cleavage of a specific peptide. The prepared single-stranded DNA–porous platinum nanoparticles–peptide (S1–pPtNPs–P1) bioconjugates were employed as nanoprobes, where the specific peptide (P1, biotin–Gly–Pro–Leu–Gly–Val–Arg–Gly–Lys–Gly–Gly–Cys) was used as a cleavage-sensing element, offering the capability of ‘on-off’ electrochemical signalling for the target MMP-2. As for the construction of the biosensor, S1–pPtNPs–P1 was immobilized on the electrode surface through the conjunction of biotin–streptavidin. Then, hybridization chain reaction (HCR) was triggered to embed the electroactive thionine (Thi). The pPtNPs could effectively catalyze the decomposition of added H2O2, resulting in the electrochemical signal of Thi being enhanced significantly (‘signal on’ state). Upon sensing cleavage with MMP-2, pPtNPs and eletroactive Thi left the electrode surface, leading to an observable decrease in the electrochemical signal of Thi (‘signal off’ state). Compared with other methods of detecting MMP-2, the proposed ‘signal on-off’ electrochemical peptide biosensor exhibited an improved sensitivity with a detection limit of 0.32 pg mL−1 and wide linear range from 1 pg mL−1 to 10 ng mL−1.


Biosensors and Bioelectronics | 2017

Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases

Xingxing Zhou; Shijing Guo; Jiaxi Gao; Jianmin Zhao; Shuyan Xue; Wenju Xu

Based on cascade catalysis amplification driven by glucose oxidase (GOx), a sensitive electrochemical impedimetric aptasensor for protein (carcinoembryonic antigen, CEA as tested model) was proposed by using Cu-based metal-organic frameworks functionalized with Pt nanoparticles, aptamer, hemin and GOx (Pt@CuMOFs-hGq-GOx). CEA aptamer loaded onto Pt@CuMOFs was bound with hemin to form hemin@G-quadruplex (hGq) with mimicking peroxidase activity. Through sandwich-type reaction of target CEA and CEA aptamers (Apt1 and Apt2), the obtained Pt@CuMOFs-hGq-GOx as signal transduction probes (STPs) was captured to the modified electrode interface. When 3,3-diaminobenzidine (DAB) and glucose were introduced, the cascade reaction was initiated by GOx to catalyze the oxidation of glucose, in situ generating H2O2. Simultaneously, the decomposition of the generated H2O2 was greatly promoted by Pt@CuMOFs and hGq as synergistic peroxide catalysts, accompanying with the significant oxidation process of DAB and the formation of nonconductive insoluble precipitates (IPs). As a result, the electron transfer in the resultant sensing interface was effectively hindered and the electrochemical impedimetric signal (EIS) was efficiently amplified. Thus, the high sensitivity of the proposed CEA aptasensor was successfully improved with 0.023pgmL-1, which may be promising and potential in assaying certain clinical disease related to CEA.


Biosensors and Bioelectronics | 2016

A sensitive impedimetric platform biosensing protein: Insoluble precipitates based on the biocatalysis of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrinin in HCR-assisted dsDNA

Xingxing Zhou; Shuyan Xue; Pei Jing; Wenju Xu

In this study, a sensitive biosensing interface for protein was reported based on nonconductive insoluble precipitates (IPs) by the biocatalysis of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrin (MnTMPyP), which was intercalated into formed double-strand DNA (dsDNA) scaffold triggered by hybridization chain reaction (HCR). In the proposed impedimetric aptasensor, carcinoembryonic antigen (CEA) and its aptamer were used as testing model. PtPd nanowires (PtPdNWs) with large surface area and superior conductivity were employed as nanocarriers to greatly immobilize biomolecules (e.g. CEA aptamers). Then, two DNA hairpins H1 and H2 were introduced to trigger HCR with the assistance of DNA initiator, resulting in the formation of a long dsDNA scaffold. Meanwhile, mimicking enzyme MnTMPyP molecules were embedded into the resultant dsDNA, in situ generating the complex MnTMPyP-dsDNA with peroxidase-like activity. Under the biocatalysis of MnTMPyP-dsDNA, 3,3-diaminobenzidine (DAB) was oxidized to form nonconductive IPs. As a result, the electron transfer between electrode interface and redox probe was vastly hindered, leading to the significant amplification of electrochemical impedimetric signal. So, greatly improved analytical performances of the proposed aptasensor were achieved with a detection limit as low as 0.030pgmL(-1). And the successful assay of CEA in human serum samples enabled the developed biosensing platform to have promising potential in bioanalysis.


Analytical Methods | 2015

A label-free and sensitive electrochemical aptasensor for thrombin based on the direct electron transfer of hemin and hemin@rGO nanosheets as the signal probe

Shuyan Xue; Huafyu Yi; Yali Yuan; Pei Jing; Wenju Xu

In this work, a label-free electrochemical aptasensor for sensitive detection of thrombin was fabricated and characterized. This aptasensor was based on the direct electron transfer of hemin and hemin functionalized reduced graphene oxide hybrid nanosheets (hemin@rGO) as the signal probe. Hemin@rGO with intrinsic peroxidase-like activity could catalyze the reaction of the peroxidase substrate because of the catalytic ability of hemin attached on the graphene surface through π–π interactions. The greatly enhanced sensitivity of the as-prepared aptasensor for thrombin was based on an effective signal amplification strategy. Firstly, the synthesized hemin@rGO nanosheets not only provided a large conductive interface, but also exhibited excellent redox activity with avoidance of an extra electroactive mediator. Secondly, the electrodeposition of Pt nanoparticles (PtNPs) on the resultant electrode surface effectively promoted the electron transfer and amplified the electrochemical response. Thirdly, further enhanced sensitivity was achieved by the outstanding catalytic performance of the horseradish peroxidase as the blocking reagent. On the basis of such a signal amplification strategy, the direct and facile electrochemical aptasensor showed superior electrocatalytic efficiency toward H2O2, and sensitively responded to 0.45 pM thrombin with a linear calibration range from 1 pM to 50 nM. So, the proposed detecting platform for thrombin could be promising for clinical analysis and assays.


RSC Advances | 2015

Dendritic Pt@Au nanowires as nanocarriers and signal enhancers for sensitive electrochemical detection of carcinoembryonic antigen

Shuyan Xue; Huayu Yi; Pei Jing; Wenju Xu

Highly sensitive detection of carcinoembryonic antigen (CEA) is very important in clinical diagnosis and treatment assessment of cancers. In this work, we proposed a sensitive and selective electrochemical aptasensor for CEA detection using dendritic Pt@Au nanowires (Pt@AuNWs) as nanocarriers and electrocatalysts. With many advantages such as large specific surface area, good conductivity, excellent electrocatalytic activity and high stability, dendritic Pt@AuNWs were first employed as nanocarriers for immobilizing abundant thiol-terminated CEA aptamer 2 (CEAapt2) and redox-active toluidine blue (Tb), resulting in the formation of AuNWs–CEAapt2–Tb bioconjugate. In the presence of CEA, the proposed bioconjugate was captured onto the electrode surface through “sandwich” tactics. The electrochemical response was then triggered and further enhanced due to the favorable catalysis capacity of dendritic Pt@AuNWs with peroxidase mimic activity for the reduction of H2O2 added into the electrolytic cell, from which an improved sensitivity benefited and was successfully achieved. Under the optimal experimental conditions, the proposed aptasensor exhibited a linear response to CEA in the range of 0.001 ng mL−1 to 80 ng mL−1 and the limit of detection (LOD) is 0.31 pg mL−1. Moreover, the aptasensor exhibited good selectivity, stability and reproducibility, which indicated its potential applications in clinical diagnostics.


Chemical Communications | 2015

A sensitive electrochemical aptasensor based on the co-catalysis of hemin/G-quadruplex, platinum nanoparticles and flower-like MnO2 nanosphere functionalized multi-walled carbon nanotubes

Wenju Xu; Shuyan Xue; Huayu Yi; Pei Jing; Yaqin Chai; Ruo Yuan


Sensors and Actuators B-chemical | 2016

Bimetallic Pt/Pd encapsulated mesoporous-hollow CeO2 nanospheres for signal amplification toward electrochemical peptide-based biosensing for matrix metalloproteinase 2

Wenju Xu; Pei Jing; Huayu Yi; Shuyan Xue; Ruo Yuan

Collaboration


Dive into the Shuyan Xue's collaboration.

Top Co-Authors

Avatar

Wenju Xu

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Pei Jing

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Huayu Yi

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Ruo Yuan

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge