Shuyu Xie
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuyu Xie.
Frontiers in Microbiology | 2014
Guyue Cheng; Haihong Hao; Shuyu Xie; Xu Wang; Menghong Dai; Lingli Huang; Zonghui Yuan
It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really replace antibiotics remains a controversial issue. This review summarizes recent development and perspectives of alternatives to antibiotics. The mechanism of actions, applications, and prospectives of the alternatives such as immunity modulating agents, bacteriophages and their lysins, antimicrobial peptides, pro-, pre-, and synbiotics, plant extracts, inhibitors targeting pathogenicity (bacterial quorum sensing, biofilm, and virulence), and feeding enzymes are thoroughly discussed. Lastly, the feasibility of alternatives to antibiotics is deeply analyzed. It is hard to conclude that the alternatives might substitute antibiotics in veterinary medicine in the foreseeable future. At the present time, prudent use of antibiotics and the establishment of scientific monitoring systems are the best and fastest way to limit the adverse effects of the abuse of antibiotics and to ensure the safety of animal-derived food and environment.
Biological Procedures Online | 2016
Mujahid Iqbal; Yanfei Tao; Shuyu Xie; Yufei Zhu; Dongmei Chen; Xu Wang; Lingli Huang; Dapeng Peng; Adeel Sattar; Muhammad A. B. Shabbir; Hafiz Iftikhar Hussain; Saeed Ahmed; Zonghui Yuan
Aqueous two-phase system (ATPS) is a liquid-liquid fractionation technique and has gained an interest because of great potential for the extraction, separation, purification and enrichment of proteins, membranes, viruses, enzymes, nucleic acids and other biomolecules both in industry and academia. Although, the partition behavior involved in the method is complex and difficult to predict. Current research shows that it has also been successfully used in the detection of veterinary drug residues in food, separation of precious metals, sewage treatment and a variety of other purposes. The ATPS is able to give high recovery yield and is easily to scale up. It is also very economic and environment friendly method. The aim of this review is to overview the basics of ATPS, optimization and its applications.
Journal of Controlled Release | 2014
Shuyu Xie; Yanfei Tao; Yuanhu Pan; Wei Qu; Guyue Cheng; Lingli Huang; Dongmei Chen; Xu Wang; Zhenli Liu; Zonghui Yuan
Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents.
Journal of Chromatography B | 2016
Dongmei Chen; Jie Yu; Yanfei Tao; Yuanhu Pan; Shuyu Xie; Lingli Huang; Dapeng Peng; Xu Wang; Yulian Wang; Zhenli Liu; Zonghui Yuan
A method for the analysis of 120 drugs in animal derived food was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These analytes belong to 12 families of veterinary anti-microbial agents (quinolones, macrolides, β-lactams, nitroimidazoles, sulfonamides, lincomycines, chloramphenicols, quinoxalines, tetracyclines, polypeptides, and antibacterial synergists) as well as other compounds not assigned to a particular drug family. The animal derived food samples include muscle and liver of swine, bovine, sheep, and chicken, as well as hen eggs and dairy milk. The sample preparation included ultrasound-assisted extraction (UAE) with acetonitrile-water and a final clean-up with auto solid-phase extraction (SPE) on HLB cartridges. The detection and quantification of 120 anti-microbial agents was performed using LC-MS/MS in positive and negative ion mode. The chromatographic separation was performed on a C18 column using acetonitrile and 0.1% formic acid as the mobile phase. The limit of detection (LOD) and limit of quantification (LOQ) of all drugs in food-producing animals were 0.5-3.0μg/kg and 1.5-10.0μg/kg, respectively. The developed method was successfully utilized to monitor real samples, which demonstrated that it is a simple, fast, and robust method, and could be used as a regulatory to screen for the presence of residues from veterinary anti-microbial drugs in animal-derived foods.
Environmental Toxicology and Pharmacology | 2016
Adeel Sattar; Shuyu Xie; Mian Abdul Hafeez; Xu Wang; Hafiz Iftikhar Hussain; Zahid Iqbal; Yuanhu Pan; Mujahid Iqbal; Muhammad A. B. Shabbir; Zonghui Yuan
Arsenic (As) is a metalloid usually found in organic and inorganic forms with different oxidation states, while inorganic form (arsenite As-III and arsenate As-v) is considered to be more hazardous as compared to organic form (methylarsonate and dimethylarsinate), with mild or no toxicity in mammals. Due to an increasing trend to using arsenicals as growth promoters or for treatment purposes, the understanding of metabolism and toxicity of As gets vital importance. Its toxicity is mainly depends on oxi-reduction states (As-III or As-v) and the level of methylation during the metabolism process. Currently, the exact metabolic pathways of As have yet to be confirmed in humans and food producing animals. Oxidative methylation and glutathione conjugation is believed to be major pathways of As metabolism. Oxidative methylation is based on conversion of Arsenite in to mono-methylarsonic acid and di-methylarsenic acid in mammals. It has been confirmed that As is only methylated in the presence of glutathione or thiol compounds, suggesting that As is being methylated in trivalent states. Subsequently, non-conjugated trivalent arsenicals are highly reactive with thiol which converts the trivalent arsenicals in to less toxic pentavalent forms. The glutathione conjugate stability of As is the most important factor for determining the toxicity. It can lead to DNA damage by alerting enzyme profile and production of reactive oxygen and nitrogen species which causes the oxidative stress. Moreover, As causes immune-dysfunction by hindering cellular and humeral immune response. The present review discussed different metabolic pathways and toxic outcomes of arsenicals in mammals which will be helpful in health risk assessment and its impact on biological world.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2015
Huimin Wei; Yanfei Tao; Dongmei Chen; Shuyu Xie; Yuanhu Pan; Zhenli Liu; Lingli Huang; Zonghui Yuan
A rapid multi-residue screening method that includes 128 veterinary anti-parasitic drugs and metabolites in meat of chicken, porcine and bovine has been developed. The scope of the method focuses on screening the following main families of veterinary anti-parasitic drugs: avermectines, benzimidazoles, the polyether ionophore, anti-tapeworm, anti-trematode, anti-piroplasmosis and chemical classes of coccodiostats. The method described a QuEChERS sample preparation procedure prior to LC-MS/MS analysis. The modified QuEChERS technology minimises sample complexity and ion suppression effects. The method was validated according to European Union guidelines (2002/657/EC) for a quantitative screening method. The validation results demonstrate that the described LC-MS/MS method provides sensitive, repeatable and meets residue screening monitoring requirements. Graphical Abstract
Colloids and Surfaces B: Biointerfaces | 2016
Xianqiang Li; Shuyu Xie; Yuanhu Pan; Wei Qu; Yanfei Tao; Dongmei Chen; Lingli Huang; Zhenli Liu; Yulian Wang; Zonghui Yuan
In order to effectively control the bacterial pneumonia in pigs, doxycycline hydrochloride (DoxHcl) and florfenicol (FF) microparticle suspension together with inclusion complexes was prepared by using hydroxypropyl-β-cyclodextrin (HP-β-CD) as host molecules, polyvinylpyrroliddone (PVP) as polymer carriers and hydroxypropyl methyl cellulose (HPMC) as suspending agents. In vitro antibacterial activity, properties, stability and pharmacokinetics of the suspension were studied. The results demonstrated that DoxHcl and FF had a synergistic or additive antibacterial activity against Streptococcus suis, Actinobacillus pleuropneumoniae and Haemophilus parasuis. The size, polydispersity index and zeta potential of microparticles were 1.46 ± 0.06 μm, 0.30 ± 0.02 and 1.53 ± 0.04 mV, respectively. The encapsulation efficiency (EE) of DoxHcl and FF was 45.28% ± 3.30% and 89.69% ± 2.71%, respectively. The re-dispersed time and sedimentation rate of the suspension were 1 min and 1. The suspension went through the 9-gage needle smoothly with withdrawal volume of 9.12 ± 0.87 mL/min. The suspension showed good stability when stored away from light, no irritation at the injection site and sustained release in PBS buffer. After intramuscular administration to pig, DoxHcl and FF could maintain over 0.15 μg/mL for 72 h. Compared to the control injection, the suspension increased the elimination half-life (T½ke) as well as mean residence time (MRT) of DoxHcl from 5.73 to 9.77 h and from 12.02 to 18.81 h, and those of FF from 12.02 to 26.19 h and from 12.02 to 28.16 h, respectively. The suspension increased the bioavailability of DoxHcl and FF by 1.74 and 1.13-fold, respectively. These results suggest that the compound suspension is a promising formulation for pig pneumonia therapy.
Frontiers in Microbiology | 2015
Ijaz Ahmad; Haihong Hao; Lingli Huang; Pascal Sanders; Xu Wang; Dongmei Chen; Yanfei Tao; Shuyu Xie; Kuang Xiuhua; Juan Li; Wan Dan; Zonghui Yuan
Cefquinome is a fourth generation cephalosporin with antimicrobial activity against gram negative and gram positive bacterial species, including Staphylococcus aureus. The aim of our study was to observe the ex-vivo activity of cefquinome against Staphylococcus aureus strains by using bovine serum from intravenously treated cattle. Cefquinome kinetics were measured by liquid chromatography and UV detection. In vitro post antibiotic effects (PAEs) and mutant prevention concentrations were determined with S. aureus strain ATCC 12598. Cefquinome exhibited time-dependent killing and produced in vitro PAEs increasing with concentration and time of exposure. A pharmacokinetic-pharmacodynamic model was established to simulate the efficacy of cefquinome for different dosage regimens. A dosage of 2 mg/kg every 12 h for 3 days was expected to reach a bactericidal activity against S. aureus in case of septicemia.
Food and Chemical Toxicology | 2017
Xianglian Liu; Pu Guo; Aimei Liu; Qinghua Wu; Xi-Juan Xue; Menghong Dai; Haihong Hao; Wei Qu; Shuyu Xie; Xu Wang; Zonghui Yuan
T-2 toxin, a major compound of trichothecenes, induces cell apoptosis and growth hormone (GH) deficiency and causes considerable growth retardation in animals and human cells. However, the mechanism underlying its growth suppression still remains unclear. Recent studies have suggested that ROS induced cell apoptosis and animal feed intake reduction, but there are limited reports on the role of RNS in T-2 toxin-mediated mitochondrial damage, cell apoptosis and growth retardation. Herein, T-2 toxin-induced GH3 cell damage and apoptosis were tested by MTT assay, LDH leakage and flow cytometry, respectively. Intracellular NO and antioxidant enzyme activity, ΔΨm, morphometric changes of mitochondria, the caspase pathway, and inflammatory factors were investigated. Free radical scavengers NAC, SOD and NO scavenger haemoglobin were used to explore the role of oxidative stress and the relationship between NO production and caspase pathway. The results clearly revealed that T-2 toxin caused significant increases in NO generation, cell apoptosis, GH deficiency, increased iNOS activity, upregulation of inflammatory factors and caspase pathway, decreases in ΔΨm and morphosis damage. These data suggest that mitochondria are a primary target of T-2 toxin-induced NO, and NO is a key mediator of T-2 toxin-induced cell apoptosis and GH deficiency via the mitochondria-dependent pathway in cells.
Journal of Separation Science | 2014
Yanfei Tao; Fangwei Zhu; Dongmei Chen; Shuyu Xie; Pan Yuanhu; Xu Wang; Zhenli Liu; Dapeng Peng; Zonghui Yuan
A sensitive liquid chromatography with tandem mass spectrometry method was developed for the determination of 11 β-agonists (clenbuterol, salbutamol, ractopamine, terbutaline, fenoterol, cimaterol, isoxsuprine, mabuterol, mapenterol, clenproperol, and tulobuterol) in swine feed. This rapid, simple, and effective extraction method was based on matrix solid-phase dispersion. The limit of quantification of clenbuterol, cimaterol, mabuterol, salbutamol, terbutaline, mapenterol, clenproperol, and tulobuterol was 1 μg/kg and that of ractopamine, fenoterol, and isoxsuprine was 2 μg/kg. The recoveries of β-agonists spiked in swine feeds at a concentration range of 1-8 μg/kg were >83.1% with relative standard deviations <9.3%. This rapid and reliable method can be used to efficiently separate, characterize, and quantify the residues of 11 β-agonists in swine feeds with advantages of simple pretreatment and environmental friendliness.