Shuzhi Bai
Harbin Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuzhi Bai.
Journal of Biomedical Science | 2011
Hongzhu Li; Jin Guo; Jun Gao; Liping Han; Chun-ming Jiang; Hongxia Li; Shuzhi Bai; Weihua Zhang; Guang-Wei Li; Hong Li; Yajun Zhao; Yan Lin; Ye Tian; Guangdong Yang; Rui Wang; Lingyun Wu; Baofeng Yang; Changqing Xu
BackgroundMyocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury.MethodsMyocardial ischemia/reperfusion injury was simulated by incubating primarily cultured neonatal rat cardiomyocytes in ischemic (hypoxic) buffer solution for 2 h. Thereafter, these cells were incubated for 24 h in normal culture medium.ResultsTreatment of the cardiomyocytes with 10 μM bromocriptine significantly decreased lactate dehydrogenase activity, increased superoxide dismutase activity, and decreased malondialdehyde content in the culture medium. Bromocriptine significantly inhibited the release of cytochrome c, accumulation of [Ca2+]i, and apoptosis induced by ischemia/reperfusion injury. Bromocriptine also down-regulated the expression of caspase-3 and -9, Fas and Fas ligand, and up-regulated Bcl-2 expression. In contrast, haloperidol (10 μM) had no significant effects on the apoptosis of cultured cardiomyocytes under the aforementioned conditions.ConclusionsThese data suggest that activation of dopamine D2 receptors can inhibit apoptosis of cardiomyocytes encountered during ischemia/reperfusion damage through various pathways.
Cell & Bioscience | 2015
Hongzhu Li; Yuehong Wang; Shuzhi Bai; Yajun Zhao; Hongxia Li; Bo Wu; Rui Wang; Lingyun Wu; Changqing Xu
The physiological and pathological roles of hydrogen sulfide (H2S) in the regulation of cardiovascular functions have been recognized. Cystathionine gamma-lyase (CSE) is a major H2S-producing enzyme in cardiovascular system. Ischemic post-conditioning (PC) provides cadioprotection in young hearts but lost in the aging hearts. The involvement of H2S in the recovery of PC-induced cardioprotection in the aging hearts is unclear. In the present study, we demonstrated that ischemia/reperfusion (I/R) decreased H2S production rate and CSE expression, aggravated cardiomyocytes damage, apoptosis and myocardial infarct size, reduced cardiac function, increased the levels of Bcl-2, caspase-3 and caspase-9 mRNA, enhanced oxidative stress in isolated young and aging rat hearts. I/R also increased the release of cytochrome c and down-regulated the phosphorylation of PI3K, Akt and GSK-3β in the aging rat hearts. We further found that PC increased H2S production rate and CSE expressions, and protected young hearts from I/R-induced cardiomyocytes damage, all of which were disappeared in the aging hearts. Supply of NaHS not only increased PC-induced cardioprotection in the young hearts, but also lightened I/R induced-myocardial damage and significantly recovered the cardioprotective role of PC against I/R induced myocardial damage in the aging hearts. LY294002 (a PI3K inhibitor) abolished but N-acetyl-cysteine (NAC, an inhibitor of reactive oxygen species, ROS) further enhanced the protective role of H2S against I/R induced myocardial damage in the aging hearts. In conclusion, these results demonstrate that exogenous H2S recovers PC-induced cardioprotection via inhibition of oxidative stress and up-regulation of PI3K-Akt-GSK-3β pathway in the aging rat hearts. These findings suggested that H2S might be a novel target for the treatment of aging cardiovascular diseases.
Basic & Clinical Pharmacology & Toxicology | 2011
Guang-Wei Li; Wenjing Xing; Shuzhi Bai; Jing-hui Hao; Jin Guo; Hongzhu Li; Hongxia Li; Weihua Zhang; Baofeng Yang; Lingyun Wu; Rui Wang; Guangdong Yang; Changqing Xu
Activation of the calcium-sensing receptor (CaSR) leads to an increase of intracellular calcium concentration and alteration of cellular activities. High level of intracellular calcium is involved in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells (PASMCs). However, whether the CaSR is expressed in PAMSCs and is related to the hypoxia-induced proliferation of PASMCs is unclear. In this study, the expression and distribution of CaSRs were detected by RT-PCR, western blotting and immunofluorescence; the intracellular concentration of free calcium ([Ca(2+) ](i) ) was determined by confocal laser scanning microscopy; cell proliferation was tested using an MTT and BrdU incorporation assay; cell cycle analysis was carried out using a flow cytometric assay; and the expression of proliferating cell nuclear antigen (PCNA), extracellular signal-regulated protein kinase 1,2 (ERK1,2) and AKT were analysed by western blotting. We observed that both CaSR mRNA and protein were expressed in rat PASMCs. Lowering of oxygen from 21% to 2.5% led to increased [Ca(2+) ](i) and CaSR expression. This condition of hypoxia also stimulated PASMCs proliferation accompanying with increased phosphorylation of ERK1,2 and AKT. GdCl(3) (an agonist of CaSR) or NPS2390 (an antagonist of CaSR) amplified or weakened the effect of hypoxia, respectively. PD98059 (a MEK1 inhibitor) or LY294002 (a PI3K inhibitors) decreased the up-regulation of PCNA expression and the increase of the cell proliferation index induced by hypoxia and GdCl(3) in PASMCs. Our results suggest that CaSR is expressed in rat PASMCs, and that CaSR activation through MEK1/ERK1,2 and PI3 kinase pathways is involved in hypoxia-induced proliferation of PASMCs.
International Journal of Cardiology | 2016
Junting Chen; Jun Gao; Weiming Sun; Lina Li; Yuehong Wang; Shuzhi Bai; Xiaoxue Li; Rui Wang; Lingyun Wu; Hongzhu Li; Changqing Xu
BACKGROUND Hydrogen sulfide (H2S), which is a member of the gasotransmitter family, plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides myocardial protective effect in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore (mPTP) in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via up-regulation of autophagy in the aged hearts is unclear. METHODS The isolated aged rat hearts (24-months-old, 450-500g) and aged cardiomyocytes-induced by d-galactose were exposed to an ischemia/reperfusion (I/R) and PC protocol. RESULTS We found PC lost cardioprotection in the aged hearts and cardiomyocytes. NaHS (a H2S donor) significantly restored cardioprotection of PC through decreasing myocardial damage, infarct size, and apoptosis, improving cardiac function, increasing cell viability and autophagy in the aged hearts and cardiomyocytes. 3-MA (an autophagy inhibitor) abolished beneficial effect of NaHS in the aged hearts. In addition, in the aged cardiomyocytes, NaHS up-regulated AMPK/mTOR pathway, and the effect of NaHS on PC was similar to the overexpression of Atg 5, treatment of AICAR (an AMPK activator) or Rapamycin (a mTOR inhibitor, an autophagy activator), respectively. CONCLUSIONS These results suggest that exogenous H2S restores cardioprotection from PC by up-regulation of autophagy via activation of AMPK/mTOR pathway in the aged hearts and cardiomyocytes.
Diabetes Research and Clinical Practice | 2012
Shuzhi Bai; Jian Sun; Hao Wu; Ning Zhang; Hongxia Li; Guang-Wei Li; Hongzhu Li; Wen He; Weihua Zhang; Yajun Zhao; Ye Tian; Baofeng Yang; Guangdong Yang; Lingyun Wu; Rui Wang; Changqing Xu
To observe the dynamic expression of calcium-sensing receptor (CaSR) in myocardium of diabetic rats and explore its role in diabetic cardiomyopathy (DCM), 40 male Wistar rats were randomly divided into 4 groups including control, diabetic-4 weeks, diabetic-8 weeks and spermine treatment groups (240 μM of spermine in drinking water). The type 2 Diabetes mellitus (DM) models were established by intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) after high-fat and high-sugar diet for one month. The echocardiographic parameters were measured, cardiac morphology was observed by electron microscope and HE staining. The intracellular calcium concentration ([Ca(2+)](i)) was detected by laser-scanning confocal microscope. Western blot analyzed the expression of CaSR, protein kinase C α(PKC-α) and calcium handling regulators, such as phospholamban (PLN), Ca(2+)-ATPase (SERCA), and ryanodine receptor (RyR). Compared with control group, [Ca(2+)](i) and the expression of CaSR, RyR and SERCA/PLN were decreased, while PKC-α and PLN were significantly increased in a time-dependent manner in diabetic groups. Meanwhile diabetic rats displayed abnormal cardiac structure and systolic and diastolic dysfunction, and spermine (CaSR agonist) could prevent or slow its progression. These results indicate that the CaSR expression of myocardium is reduced in the progress of DCM, and its potential mechanism is related to the impaired intracellular calcium homeostasis.
Journal of Biomedical Science | 2011
Guang-Wei Li; Qiu-shi Wang; Jing-hui Hao; Wenjing Xing; Jin Guo; Hongzhu Li; Shuzhi Bai; Hongxia Li; Weihua Zhang; Baofeng Yang; Guangdong Yang; Lingyun Wu; Rui Wang; Changqing Xu
BackgroundThe extracellular calcium-sensing receptor (CaSR) belongs to family C of the G protein coupled receptors. Whether the CaSR is expressed in the pulmonary artery (PA) is unknown.MethodsThe expression and distribution of CaSR were detected by RT-PCR, Western blotting and immunofluorescence. PA tension was detected by the pulmonary arterial ring technique, and the intracellular calcium concentration ([Ca2+]i) was detected by a laser-scanning confocal microscope.ResultsThe expressions of CaSR mRNA and protein were found in both rat pulmonary artery smooth muscle cells (PASMCs) and PAs. Increased levels of [Ca2+]o (extracellular calcium concentration) or Gd3+ (an agonist of CaSR) induced an increase of [Ca2+]i and PAs constriction in a concentration-dependent manner. In addition, the above-mentioned effects of Ca2+ and Gd3+ were inhibited by U73122 (specific inhibitor of PLC), 2-APB (specific antagonist of IP3 receptor), and thapsigargin (blocker of sarcoplasmic reticulum calcium ATPase).ConclusionsCaSR is expressed in rat PASMCs, and is involved in regulation of PA tension by increasing [Ca2+]i through G-PLC-IP3 pathway.
Clinical and Experimental Pharmacology and Physiology | 2011
Wenjing Xing; Fan-Juan Kong; Guang-Wei Li; Kun Qiao; Weihua Zhang; Li Zhang; Shuzhi Bai; Yu-Hui Xi; Hongxia Li; Ye Tian; Huan Ren; Lingyun Wu; Rui Wang; Changqing Xu
1. Calcium‐sensing receptors (CaSR) exist in a variety of tissues. In 2010, we first identified its functional expression in Buffalo rat liver (BRL) cells and demonstrated that the activation of CaSR was involved in an increased intracellular calcium through the Gq subunit–phospholipase C–inositol triphosphate pathway. However, its role and related mechanism in hepatic ischaemia/reperfusion (I/R) injury is still unclear.
Basic & Clinical Pharmacology & Toxicology | 2009
Fanghao Lu; Zhiliang Tian; Weihua Zhang; Yajun Zhao; Shuzhi Bai; Huan Ren; He Chen; Xue Yu; Jingxiao Wang; Hong Li; Zhenwei Pan; Ye Tian; Baofeng Yang; Rui Wang; Changqing Xu
The calcium-sensing receptor (CaR) is a G protein-coupled receptor. The CaR stimulation elicits phospholipase C-mediated inositol triphosphate formation, leading to an elevation in the level of intracellular calcium released from endoplasmic reticulum (ER). Depletion of ER Ca(2+) leads to ER stress, which is thought to induce apoptosis. Intracellular calcium overload-induced apoptosis in cardiac myocytes during hypoxia-reoxygenation (H/Re) has been demonstrated. However, the links between CaR, ER stress and apoptosis during H/Re are unclear. This study hypothesized that the CaR could induce apoptosis in neonatal rat cardiomyocytes during H/Re via the ER stress pathway. Neonatal rat cardiomyocytes were subjected to 3 hr of hypoxia, followed by 6 hr of reoxygenation. CaR expression was elevated and the number of apoptotic cells was significantly increased, as shown by transferase-mediated dUTP nick end-labelling, with exposure to CaCl(2), a CaR activator, during H/Re. The intracellular calcium concentration was significantly elevated and the Ca(2+) concentration in the ER was dramatically decreased during H/Re with CaCl(2); both intracellular and ER calcium concentrations were detected by laser confocal microscopy. Expression of GRP78 (glucose-regulated protein 78), the cleavage products of ATF6 (activating transcription factor 6), phospho-PERK [pancreatic ER kinase (PKR)-like ER kinase], the activated fragments of caspase-12, and phospho-JNK (c-Jun NH(2)-terminal kinase) were increased following exposure to CaCl(2) during H/Re. Our results confirmed that the activated CaR can induce cardiomyocyte apoptosis via ER stress-associated apoptotic pathways during H/Re.
Cell & Bioscience | 2015
Hongzhu Li; Chao Zhang; Weiming Sun; Lina Li; Bo Wu; Shuzhi Bai; Hongxia Li; Xin Zhong; Rui Wang; Lingyun Wu; Changqing Xu
The physiological and pathological roles of hydrogen sulfide (H2S) in the regulation of cardiovascular functions have been recognized. H2S protects against the hypoxia/reoxygenation (H/R)-induced injury and apoptosis of cardiomyocytes, and ischemic post-conditioning (PC) plays an important role in cardioprotection from H/R injury in neonatal cardiomyocytes but not in aging cardiomyocytes. Whether H2S is involved in the recovery of PC-induced cardioprotection in aging cardiomyocytes is unclear. In the present study, we found that both H/R and PC decreased cystathionine-γ-lyase (CSE) expression and the production rate of H2S. Supplementation of NaHS protected against H/R-induced apoptosis, the expression of cleaved caspase-3 and cleaved caspase-9, the release of cytochrome c (Cyt c), and mPTP opening. The addition of NaHS also counteracted the reduction of cell viability caused by H/R and increased the phosphorylation of ERK1/2, PI3K, Akt, GSK-3β and mitochondrial membrane potential. Additionally, NaHS increased Bcl-2 expression, promoted PKC-ε translocation to the cell membrane, and activated mitochondrial ATP-sensitive K channels (mitoKATP). PC alone did not provide cardioprotection in H/R-treated aging cardiomyocytes, which was significantly restored by the supplementation of NaHS. In conclusion, our results suggest that exogenous H2S restores PC-induced cardioprotection via the inhibition of mPTP opening by the activation of the ERK1/2-GSK-3β, PI3K-Akt-GSK-3β and PKC-ε-mitoKATP pathways in aging cardiomyocytes. These findings provide a novel target for the treatment of aging ischemic cardiomyopathy.
Oxidative Medicine and Cellular Longevity | 2014
Weiwei Wang; Hao Zhang; Guo Xue; Li Zhang; Weihua Zhang; Fanghao Lu; Hongzhu Li; Shuzhi Bai; Yan Lin; Yu Lou; Changqing Xu; Yajun Zhao
Background. Ischemic preconditioning (IPC) strongly protects against myocardial ischemia reperfusion (IR) injury. However, IPC protection is ineffective in aged hearts. Exercise training reduces the incidence of age-related cardiovascular disease and upregulates the ornithine decarboxylase (ODC)/polyamine pathway. The aim of this study was to investigate whether exercise can reestablish IPC protection in aged hearts and whether IPC protection is linked to restoration of the cardiac polyamine pool. Methods. Rats aging 3 or 18 months perform treadmill exercises with or without gradient respectively for 6 weeks. Isolated hearts and isolated cardiomyocytes were exposed to an IR and IPC protocol. Results. IPC induced an increase in myocardial polyamines by regulating ODC and spermidine/spermine acetyltransferase (SSAT) in young rat hearts, but IPC did not affect polyamine metabolism in aged hearts. Exercise training inhibited the loss of preconditioning protection and restored the polyamine pool by activating ODC and inhibiting SSAT in aged hearts. An ODC inhibitor, α-difluoromethylornithine, abolished the recovery of preconditioning protection mediated by exercise. Moreover, polyamines improved age-associated mitochondrial dysfunction in vitro. Conclusion. Exercise appears to restore preconditioning protection in aged rat hearts, possibly due to an increase in intracellular polyamines and an improvement in mitochondrial function in response to a preconditioning stimulus.