Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuzi Niu is active.

Publication


Featured researches published by Shuzi Niu.


international acm sigir conference on research and development in information retrieval | 2014

Learning for search result diversification

Yadong Zhu; Yanyan Lan; Jiafeng Guo; Xueqi Cheng; Shuzi Niu

Search result diversification has gained attention as a way to tackle the ambiguous or multi-faceted information needs of users. Most existing methods on this problem utilize a heuristic predefined ranking function, where limited features can be incorporated and extensive tuning is required for different settings. In this paper, we address search result diversification as a learning problem, and introduce a novel relational learning-to-rank approach to formulate the task. However, the definitions of ranking function and loss function for the diversification problem are challenging. In our work, we firstly show that diverse ranking is in general a sequential selection process from both empirical and theoretical aspects. On this basis, we define ranking function as the combination of relevance score and diversity score between the current document and those previously selected, and loss function as the likelihood loss of ground truth based on Plackett-Luce model, which can naturally model the sequential generation of a diverse ranking list. Stochastic gradient descent is then employed to conduct the unconstrained optimization, and the prediction of a diverse ranking list is provided by a sequential selection process based on the learned ranking function. The experimental results on the public TREC datasets demonstrate the effectiveness and robustness of our approach.


international acm sigir conference on research and development in information retrieval | 2012

Top-k learning to rank: labeling, ranking and evaluation

Shuzi Niu; Jiafeng Guo; Yanyan Lan; Xueqi Cheng

In this paper, we propose a novel top-k learning to rank framework, which involves labeling strategy, ranking model and evaluation measure. The motivation comes from the difficulty in obtaining reliable relevance judgments from human assessors when applying learning to rank in real search systems. The traditional absolute relevance judgment method is difficult in both gradation specification and human assessing, resulting in high level of disagreement on judgments. While the pairwise preference judgment, as a good alternative, is often criticized for increasing the complexity of judgment from O(n) to (n log n). Considering the fact that users mainly care about top ranked search results, we propose a novel top-k labeling strategy which adopts the pairwise preference judgment to generate the top k ordering items from n documents (i.e. top-k ground-truth) in a manner similar to that of HeapSort. As a result, the complexity of judgment is reduced to O(n log k). With the top-k ground-truth, traditional ranking models (e.g. pairwise or listwise models) and evaluation measures (e.g. NDCG) no longer fit the data set. Therefore, we introduce a new ranking model, namely FocusedRank, which fully captures the characteristics of the top-k ground-truth. We also extend the widely used evaluation measures NDCG and ERR to be applicable to the top-k ground-truth, referred as κ-NDCG and κ-ERR, respectively. Finally, we conduct extensive experiments on benchmark data collections to demonstrate the efficiency and effectiveness of our top-k labeling strategy and ranking models.


international acm sigir conference on research and development in information retrieval | 2014

What makes data robust: a data analysis in learning to rank

Shuzi Niu; Yanyan Lan; Jiafeng Guo; Xueqi Cheng; Xiubo Geng

When applying learning to rank algorithms in real search applications, noise in human labeled training data becomes an inevitable problem which will affect the performance of the algorithms. Previous work mainly focused on studying how noise affects ranking algorithms and how to design robust ranking algorithms. In our work, we investigate what inherent characteristics make training data robust to label noise. The motivation of our work comes from an interesting observation that a same ranking algorithm may show very different sensitivities to label noise over different data sets. We thus investigate the underlying reason for this observation based on two typical kinds of learning to rank algorithms (i.e.~pairwise and listwise methods) and three different public data sets (i.e.~OHSUMED, TD2003 and MSLR-WEB10K). We find that when label noise increases in training data, it is the \emph{document pair noise ratio} (i.e.~\emph{pNoise}) rather than \emph{document noise ratio} (i.e.~\emph{dNoise}) that can well explain the performance degradation of a ranking algorithm.


conference on information and knowledge management | 2012

A new probabilistic model for top-k ranking problem

Shuzi Niu; Yanyan Lan; Jiafeng Guo; Xueqi Cheng

This paper is concerned with top-k ranking problem, which reflects the fact that people pay more attention to the top ranked objects in real ranking application like information retrieval. A popular approach to top-k ranking problem is based on probabilistic models, such as Luce model and Mallows model. However, whether the sequential generative process described in these models is a suitable way for top-k ranking remains a question. According to the riffled independence factorization proposed in recent literature, which is a natural structural assumption on top-k ranking, we propose a new generative process of top-k ranking data. Our approach decomposes distributions over the top-k ranking into two layers: the first layer describes the relative ordering between the top k objects and the rest n-k objects, and the second layer describes the full ordering on the top k objects. On this basis, we propose a new probabilistic model for top-k ranking problem, called hierarchical ordering model. Specifically, we use three different probabilistic models to describe different generative processes of the first layer, and Luce model to describe the sequential generative process of the second layer, thus we obtain three different specific hierarchical ordering models. We also conduct extensive experiments on benchmark datasets to show that our proposed models can outperform previous models significantly.


web search and data mining | 2015

Listwise Approach for Rank Aggregation in Crowdsourcing

Shuzi Niu; Yanyan Lan; Jiafeng Guo; Xueqi Cheng; Lei Yu; Guoping Long

Inferring a gold-standard ranking over a set of objects, such as documents or images, is a key task to build test collections for various applications like Web search and recommender systems. Crowdsourcing services provide an efficient and inexpensive way to collect judgments via labeling by sets of annotators. We thus study the problem of finding a consensus ranking from crowdsourced judgments. In contrast to conventional rank aggregation methods which minimize the distance between predicted ranking and input judgments from either pointwise or pairwise perspective, we argue that it is critical to consider the distance in a listwise way to emphasize the position importance in ranking. Therefore, we introduce a new listwise approach in this paper, where ranking measure based objective functions are utilized for optimization. In addition, we also incorporate the annotator quality into our model since the reliability of annotators can vary significantly in crowdsourcing. For optimization, we transform the optimization problem to the Linear Sum Assignment Problem, and then solve it by a very efficient algorithm named CrowdAgg guaranteeing the optimal solution. Experimental results on two benchmark data sets from different crowdsourcing tasks show that our algorithm is much more effective, efficient and robust than traditional methods.


Information Retrieval | 2015

Which noise affects algorithm robustness for learning to rank

Shuzi Niu; Yanyan Lan; Jiafeng Guo; Shengxian Wan; Xueqi Cheng

When applying learning to rank algorithms in real search applications, noise in human labeled training data becomes an inevitable problem which will affect the performance of the algorithms. Previous work mainly focused on studying how noise affects ranking algorithms and how to design robust ranking algorithms. In our work, we investigate what inherent characteristics make training data robust to label noise and how to utilize them to guide labeling. The motivation of our work comes from an interesting observation that a same ranking algorithm may show very different sensitivities to label noise over different data sets. We thus investigate the underlying reason for this observation based on three typical kinds of learning to rank algorithms (i.e. pointwise, pairwise and listwise methods) and three public data sets (i.e. OHSUMED, TD2003 and MSLR-WEB10K) with different properties. We find that when label noise increases in training data, it is the document pair noise ratio (referred to as pNoise) rather than document noise ratio (referred to as dNoise) that can well explain the performance degradation of a ranking algorithm. We further identify two inherent characteristics of the training data, namely relevance levels and label balance, that have great impact on the variation of pNoise with respect to label noise (i.e. dNoise). According to these above results, we further discuss some guidelines on the labeling strategy to construct robust training data for learning to rank algorithms in practice.


web information systems engineering | 2016

Bridging Semantic Gap Between App Names: Collective Matrix Factorization for Similar Mobile App Recommendation

Ning Bu; Shuzi Niu; Lei Yu; Wenjing Ma; Guoping Long

With the increase of mobile apps, i.e.i¾?applications, it is more and more difficult for users to discover their desired apps. Similar app recommendation, which plays a critical role in the app discovering process, is of our main concern in this paper. Intuitively, name is an important feature to distinguish apps. So app names are often used to learn the app similarity. However, existing studies do not perform well because names are usually very short. In this paper, we explore the phenomenon of the ill performance, and dive into the underlying reason, which motivates us to leverage additional corpus to bridge the gap between similar words. Specifically, we learn app representation from names and other related corpus, and formalize it as a collective matrix factorization problem. Moreover, we propose to utilize alternating direction method of multipliers to solve this collective matrix factorization problem. Experimental results on real-world data sets indicate that our proposed approach outperforms state-of-the-art methods on similar app recommendation.


international acm sigir conference on research and development in information retrieval | 2018

K-plet Recurrent Neural Networks for Sequential Recommendation

Xiang Lin; Shuzi Niu; Yiqiao Wang; Yucheng Li

Recurrent Neural Networks have been successful in learning meaningful representations from sequence data, such as text and speech. However, recurrent neural networks attempt to model only the overall structure of each sequence independently, which is unsuitable for recommendations. In recommendation system, an optimal model should not only capture the global structure, but also the localized relationships. This poses a great challenge in the application of recurrent neural networks to the sequence prediction problem. To tackle this challenge, we incorporate the neighbor sequences into recurrent neural networks to help detect local relationships. Thus we propose a K -plet R ecurrent Neural Network (Kr Network for short) to accommodate multiple sequences jointly, and then introduce two ways to model their interactions between sequences. Experimental results on benchmark datasets show that our proposed architecture Kr Network outperforms state-of-the-art baseline methods in terms of generalization, short-term and long term prediction accuracy.


international acm sigir conference on research and development in information retrieval | 2018

Modeling Dynamic Pairwise Attention for Crime Classification over Legal Articles

Pengfei Wang; Ze Yang; Shuzi Niu; Yongfeng Zhang; Lei Zhang; ShaoZhang Niu

In juridical field, judges usually need to consult several relevant cases to determine the specific articles that the evidence violated, which is a task that is time consuming and needs extensive professional knowledge. In this paper, we focus on how to save the manual efforts and make the conviction process more efficient. Specifically, we treat the evidences as documents, and articles as labels, thus the conviction process can be cast as a multi-label classification problem. However, the challenge in this specific scenario lies in two aspects. One is that the number of articles that evidences violated is dynamic, which we denote as the label dynamic problem. The other is that most articles are violated by only a few of the evidences, which we denote as the label imbalance problem. Previous methods usually learn the multi-label classification model and the label thresholds independently, and may ignore the label imbalance problem. To tackle with both challenges, we propose a unified D ynamic P airwise A ttention M odel (DPAM for short) in this paper. Specifically, DPAM adopts the multi-task learning paradigm to learn the multi-label classifier and the threshold predictor jointly, and thus DPAM can improve the generalization performance by leveraging the information learned in both of the two tasks. In addition, a pairwise attention model based on article definitions is incorporated into the classification model to help alleviate the label imbalance problem. Experimental results on two real-world datasets show that our proposed approach significantly outperforms state-of-the-art multi-label classification methods.


uncertainty in artificial intelligence | 2013

Stochastic rank aggregation

Shuzi Niu; Yanyan Lan; Jiafeng Guo; Xueqi Cheng

Collaboration


Dive into the Shuzi Niu's collaboration.

Top Co-Authors

Avatar

Jiafeng Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xueqi Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanyan Lan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guoping Long

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ning Bu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yadong Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changying Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Beijing University of Posts and Telecommunications

View shared research outputs
Researchain Logo
Decentralizing Knowledge