Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shweta Deshpande is active.

Publication


Featured researches published by Shweta Deshpande.


Nature Biotechnology | 2012

Reference Genome Sequence Of The Model Plant Setaria

Jeffrey L. Bennetzen; Jeremy Schmutz; Hao Wang; Ryan Percifield; Jennifer S. Hawkins; Ana Clara Pontaroli; Matt C. Estep; Liang Feng; Justin N. Vaughn; Jane Grimwood; Jerry Jenkins; Kerrie Barry; Erika Lindquist; Uffe Hellsten; Shweta Deshpande; Xuewen Wang; Xiaomei Wu; Therese Mitros; Jimmy K. Triplett; Xiaohan Yang; Chu-Yu Ye; Margarita Mauro-Herrera; Lin Wang; Pinghua Li; Manoj K. Sharma; Rita Sharma; Pamela C. Ronald; Olivier Panaud; Elizabeth A. Kellogg; Thomas P. Brutnell

We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ∼400-Mb assembly covers ∼80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).


Proceedings of the National Academy of Sciences of the United States of America | 2016

Comparative genomics of biotechnologically important yeasts

Robert Riley; Sajeet Haridas; Kenneth H. Wolfe; Mariana R. Lopes; Chris Todd Hittinger; Markus Göker; Asaf Salamov; Jennifer H. Wisecaver; Tanya M. Long; Christopher H. Calvey; Andrea Aerts; Kerrie Barry; Cindy Choi; Alicia Clum; Aisling Y. Coughlan; Shweta Deshpande; Alexander P. Douglass; Sara J. Hanson; Hans-Peter Klenk; Kurt LaButti; Alla Lapidus; Erika Lindquist; Anna Lipzen; Jan P. Meier-Kolthoff; Robin A. Ohm; Robert Otillar; Jasmyn Pangilinan; Yi Peng; Antonis Rokas; Carlos A. Rosa

Significance The highly diverse Ascomycete yeasts have enormous biotechnological potential. Collectively, these yeasts convert a broad range of substrates into useful compounds, such as ethanol, lipids, and vitamins, and can grow in extremes of temperature, salinity, and pH. We compared 29 yeast genomes with the goal of correlating genetics to useful traits. In one rare species, we discovered a genetic code that translates CUG codons to alanine rather than canonical leucine. Genome comparison enabled correlation of genes to useful metabolic properties and showed the synteny of the mating-type locus to be conserved over a billion years of evolution. Our study provides a roadmap for future biotechnological exploitations. Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


Genome Announcements | 2013

Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod - ) Ineffective (Fix - ) Isolate from Coriaria nepalensis

Faten Ghodhbane-Gtari; Nicholas Beauchemin; David Bruce; Patrick Chain; Amy Chen; Karen W. Davenport; Shweta Deshpande; Chris Detter; Teal Furnholm; Lynne Goodwin; Maher Gtari; Cliff Han; James Han; Marcel Huntemann; Natalia Ivanova; Nikos C. Kyrpides; Miriam Land; Victor Markowitz; Kostas Mavrommatis; Matt Nolan; Imen Nouioui; Ioanna Pagani; Amrita Pati; Sam Pitluck; Catarina L. Santos; Arnab Sen; Saubashya Sur; Ernest Szeto; Fernando Tavares; Hazuki Teshima

ABSTRACT We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.


Standards in Genomic Sciences | 2011

Complete genome sequence of Isosphaera pallida type strain (IS1BT)

Markus Göker; David Cleland; Elizabeth Saunders; Alla Lapidus; Matt Nolan; Susan Lucas; Nancy Hammon; Shweta Deshpande; Jan Fang Cheng; Roxane Tapia; Cliff Han; Lynne Goodwin; Sam Pitluck; Konstantinos Liolios; Ioanna Pagani; Natalia Ivanova; Konstantinos Mavromatis; Amrita Pati; Amy Chen; Krishna Palaniappan; Miriam Land; Loren Hauser; Yun Juan Chang; Cynthia D. Jeffries; John C. Detter; Brian Beck; Tanja Woyke; James Bristow; Jonathan A. Eisen; Victor Markowitz

Isosphaera pallida (ex Woronichin 1927) Giovannoni et al. 1995 is the type species of the genus Isosphaera. The species is of interest because it was the first heterotrophic bacterium known to be phototactic, and it occupies an isolated phylogenetic position within the Planctomycetaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Isosphaera and the third of a member of the family Planctomycetaceae. The 5,472,964 bp long chromosome and the 56,340 bp long plasmid with a total of 3,763 protein-coding and 60 RNA genes are part of the GenomicEncyclopedia ofBacteria andArchaea project.


Genome Announcements | 2013

Draft Genome sequence of Frankia sp. Strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida

Arnab Sen; Nicholas Beauchemin; David Bruce; Patrick Chain; Amy Chen; Karen W. Davenport; Shweta Deshpande; Chris Detter; Teal Furnholm; Faten Ghodbhane-Gtari; Lynne Goodwin; Maher Gtari; Cliff Han; James Han; Marcel Huntemann; Natalia Ivanova; Nikos C. Kyrpides; Miriam Land; Victor Markowitz; Kostas Mavrommatis; Matt Nolan; Imen Nouioui; Ioanna Pagani; Amrita Pati; Sam Pitluck; Catarina L. Santos; Saubashya Sur; Ernest Szeto; Fernando Tavares; Hazuki Teshima

ABSTRACT Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida.


Standards in Genomic Sciences | 2012

Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta

Birte Abt; Cliff Han; Carmen Scheuner; Megan Lu; Alla Lapidus; Matt Nolan; Susan Lucas; Nancy Hammon; Shweta Deshpande; Jan-Fang Cheng; Roxanne Tapia; Lynne Goodwin; Sam Pitluck; Konstantinos Liolios; Ioanna Pagani; Natalia Ivanova; Konstantinos Mavromatis; Natalia Mikhailova; Marcel Huntemann; Amrita Pati; Amy Chen; Krishna Palaniappan; Miriam Land; Loren Hauser; Evelyne-Marie Brambilla; Manfred Rohde; Stefan Spring; Sabine Gronow; Markus Göker; Tanja Woyke

Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately anaerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut contents of the termite Neotermes castaneus. The species is of interest because it may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1T, and based on physiological and genomic characteristics, we propose its reclassification as a novel species in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 2,227,296 bp long genome of strain SPN1T with its 1,866 protein-coding and 58 RNA genes is a part of the GenomicEncyclopedia ofBacteria andArchaea project.


Genetics | 2014

A Genome-Wide Scan for Evidence of Selection in a Maize Population Under Long-Term Artificial Selection for Ear Number

Timothy M. Beissinger; Candice N. Hirsch; Brieanne Vaillancourt; Shweta Deshpande; Kerrie Barry; C. Robin Buell; Shawn M. Kaeppler; Daniel Gianola; Natalia de Leon

A genome-wide scan to detect evidence of selection was conducted in the Golden Glow maize long-term selection population. The population had been subjected to selection for increased number of ears per plant for 30 generations, with an empirically estimated effective population size ranging from 384 to 667 individuals and an increase of more than threefold in the number of ears per plant. Allele frequencies at >1.2 million single-nucleotide polymorphism loci were estimated from pooled whole-genome resequencing data, and FST values across sliding windows were employed to assess divergence between the population preselection and the population postselection. Twenty-eight highly divergent regions were identified, with half of these regions providing gene-level resolution on potentially selected variants. Approximately 93% of the divergent regions do not demonstrate a significant decrease in heterozygosity, which suggests that they are not approaching fixation. Also, most regions display a pattern consistent with a soft-sweep model as opposed to a hard-sweep model, suggesting that selection mostly operated on standing genetic variation. For at least 25% of the regions, results suggest that selection operated on variants located outside of currently annotated coding regions. These results provide insights into the underlying genetic effects of long-term artificial selection and identification of putative genetic elements underlying number of ears per plant in maize.


Applied and Environmental Microbiology | 2014

Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass

Trey K. Sato; Tongjun Liu; Lucas S. Parreiras; Daniel L. Williams; Dana J. Wohlbach; Benjamin D. Bice; Irene M. Ong; Rebecca J. Breuer; Li Qin; Donald Busalacchi; Shweta Deshpande; Chris Daum; Audrey P. Gasch; David B. Hodge

ABSTRACT The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.


Standards in Genomic Sciences | 2011

Complete genome sequence of Desulfobulbus propionicus type strain (1pr3 T )

Ioanna Pagani; Alla Lapidus; Matt Nolan; Susan Lucas; Nancy Hammon; Shweta Deshpande; Jan Fang Cheng; Olga Chertkov; Karen W. Davenport; Roxane Tapia; Cliff Han; Lynne Goodwin; Sam Pitluck; Konstantinos Liolios; Konstantinos Mavromatis; Natalia Ivanova; Natalia Mikhailova; Amrita Pati; Amy Chen; Krishna Palaniappan; Miriam Land; Loren Hauser; Yun Juan Chang; Cynthia D. Jeffries; John C. Detter; Evelyne Brambilla; K. Palani Kannan; Olivier Duplex Ngatchou Djao; Manfred Rohde; Rüdiger Pukall

Desulfobulbus propionicus Widdel 1981 is the type species of the genus Desulfobulbus, which belongs to the family Desulfobulbaceae. The species is of interest because of its great implication in the sulfur cycle in aquatic sediments, its large substrate spectrum and a broad versatility in using various fermentation pathways. The species was the first example of a pure culture known to disproportionate elemental sulfur to sulfate and sulfide. This is the first completed genome sequence of a member of the genus Desulfobulbus and the third published genome sequence from a member of the family Desulfobulbaceae. The 3,851,869 bp long genome with its 3,351 protein-coding and 57 RNA genes is a part of the GenomicEncyclopedia ofBacteria andArchaea project.


Mbio | 2015

Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems

Robert Kourist; Felix Bracharz; Jan Lorenzen; On Kracht; Mansi Chovatia; Chris Daum; Shweta Deshpande; Anna Lipzen; Matt Nolan; Robin A. Ohm; Igor V. Grigoriev; Sheng Sun; Joseph Heitman; Thomas Brück; Minou Nowrousian

ABSTRACT Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. IMPORTANCE Finite fossil fuel resources pose sustainability challenges to society and industry. Microbial oils are a sustainable feedstock for biofuel and chemical production that does not compete with food production. We describe genome and transcriptome analyses of the oleaginous yeast Trichosporon oleaginosus, which can accumulate up to 70% of its dry weight as lipids. In contrast to conventional yeasts, this organism not only shows an absence of diauxic effect while fermenting hexoses and pentoses but also effectively utilizes xylose and N-acetylglucosamine, which are building blocks of lignocellulose and chitin, respectively. Transcriptome analysis revealed metabolic networks that govern conversion of xylose or N-acetylglucosamine as well as lipid accumulation. These data form the basis for a targeted strain optimization strategy. Furthermore, analysis of the mating type of T. oleaginosus supports the hypothesis of a trend toward larger mating-type regions in fungi, similar to the evolution of sex chromosomes in animals and plants. Finite fossil fuel resources pose sustainability challenges to society and industry. Microbial oils are a sustainable feedstock for biofuel and chemical production that does not compete with food production. We describe genome and transcriptome analyses of the oleaginous yeast Trichosporon oleaginosus, which can accumulate up to 70% of its dry weight as lipids. In contrast to conventional yeasts, this organism not only shows an absence of diauxic effect while fermenting hexoses and pentoses but also effectively utilizes xylose and N-acetylglucosamine, which are building blocks of lignocellulose and chitin, respectively. Transcriptome analysis revealed metabolic networks that govern conversion of xylose or N-acetylglucosamine as well as lipid accumulation. These data form the basis for a targeted strain optimization strategy. Furthermore, analysis of the mating type of T. oleaginosus supports the hypothesis of a trend toward larger mating-type regions in fungi, similar to the evolution of sex chromosomes in animals and plants.

Collaboration


Dive into the Shweta Deshpande's collaboration.

Top Co-Authors

Avatar

Amy Chen

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matt Nolan

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Sam Pitluck

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Lucas

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Miriam Land

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge