Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shyam Nyati is active.

Publication


Featured researches published by Shyam Nyati.


Cancer Research | 2010

Role of Epidermal Growth Factor Receptor Degradation in Cisplatin-Induced Cytotoxicity in Head and Neck Cancer

Aarif Ahsan; Susan M. Hiniker; Susmita G. Ramanand; Shyam Nyati; Ashok Hegde; Abigail Helman; Radhika Menawat; Mahaveer S. Bhojani; Theodore S. Lawrence; Mukesh K. Nyati

Cisplatin and its analogues are the most commonly used agents in the treatment of head and neck squamous cell carcinoma. In this study, we investigated a possible role of epidermal growth factor (EGF) receptor (EGFR) phosphorylation and degradation in cisplatin-induced cytotoxicity. Cisplatin treatment led to an increase in initial EGFR phosphorylation at Y1045, the binding site of ubiquitin ligase, Casitas B-lineage lymphoma (c-Cbl), followed by ubiquitination in the relatively cisplatin-sensitive cell lines. However, cisplatin-resistant cell lines underwent minimal EGFR phosphorylation at the Y1045 site and minimal ubiquitination. We found that EGFR degradation in response to cisplatin was highly correlated with cytotoxicity in seven head and neck cancer cell lines. Pretreatment with EGF enhanced cisplatin-induced EGFR degradation and cytotoxicity, whereas erlotinib pretreatment blocked EGFR phosphorylation, degradation, and cisplatin-induced cytotoxicity. Expression of a mutant Y1045F EGFR, which is relatively resistant to c-Cbl-mediated degradation, in Chinese hamster ovary cells and the UMSCC11B human head and neck cancer cell line protected EGFR from cisplatin-induced degradation and enhanced cell survival compared with wild-type (WT) EGFR. Transfection of WT c-Cbl enhanced EGFR degradation and cisplatin-induced cytotoxicity compared with control vector. These results show that cisplatin-induced EGFR phosphorylation and subsequent ubiquitination and degradation is an important determinant of cisplatin sensitivity. Our findings suggest that treatment with an EGFR inhibitor before cisplatin would be antagonistic, as EGFR inhibition would protect EGFR from cisplatin-mediated phosphorylation and subsequent ubiquitination and degradation, which may explain the negative results of several recent clinical trials. Furthermore, they suggest that EGFR degradation is worth exploring as an early biomarker of response and as a target to improve outcome.


Molecular Imaging | 2013

NanoLuc Reporter for Dual Luciferase Imaging in Living Animals

Amanda C. Stacer; Shyam Nyati; Pranav Moudgil; Rahul Iyengar; Kathryn E. Luker; Alnawaz Rehemtulla; Gary D. Luker

Bioluminescence imaging is widely used for cell-based assays and animal imaging studies in biomedical research and drug development, capitalizing on the high signal to background of this technique. A relatively small number of luciferases are available for imaging studies, substantially limiting the ability to image multiple molecular and cellular events, as done commonly with fluorescence imaging. To advance dual reporter bioluminescence molecular imaging, we tested a recently developed, adenosine triphosphate–independent luciferase enzyme from Oplophorus gracilirostris (NanoLuc [NL]) as a reporter for animal imaging. We demonstrated that NL could be imaged in superficial and deep tissues in living mice, although the detection of NL in deep tissues was limited by emission of predominantly blue light by this enzyme. Changes in bioluminescence from NL over time could be used to quantify tumor growth, and secreted NL was detectable in small volumes of serum. We combined NL and firefly luciferase reporters to quantify two key steps in transforming growth factor β signaling in intact cells and living mice, establishing a novel dual luciferase imaging strategy for quantifying signal transduction and drug targeting. Our results establish NL as a new reporter for bioluminescence imaging studies in intact cells and living mice that will expand imaging of signal transduction in normal physiology, disease, and drug development.


Science Signaling | 2015

The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

Shyam Nyati; Katrina Schinske-Sebolt; Sethuramasundaram Pitchiaya; Katerina Chekhovskiy; Areeb Chator; Nauman Chaudhry; Joseph Dosch; Marcian E. Van Dort; Sooryanarayana Varambally; Chandan Kumar-Sinha; Mukesh K. Nyati; Dipankar Ray; Nils G. Walter; Hongtao Yu; Brian D. Ross; Alnawaz Rehemtulla

A kinase that controls cell division also promotes the activity of the transforming growth factor–β pathway. Placing BUB1 in the TGF-β Pathway The transforming growth factor–β (TGF-β) pathway regulates cell proliferation and migration, processes involved in development, regeneration, and tumorigenesis. The kinase BUB1, which promotes proper chromosome alignment as cells prepare to divide, also regulates cell proliferation. Nyati et al. connected BUB1 to TGF-β signaling. They found that knocking down BUB1 impaired TGF-β–mediated proliferation of tumor cells—but not by acting at chromosomes. Instead, cytoplasmic BUB1 interacted with TGF-β receptor subunits at the cell surface, promoting the interaction between receptor subunits and between the receptor and downstream signaling proteins. Inhibiting the kinase activity of BUB1 suppressed TGF-β pathway activity in cells in culture and in xenografts. The findings suggest a possible point of crosstalk between the mitotic checkpoint and TGF-β signaling. Transforming growth factor–β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β–mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion.


Clinical Cancer Research | 2011

Molecular Imaging of TGFβ-Induced Smad2/3 Phosphorylation Reveals a Role for Receptor Tyrosine Kinases in Modulating TGFβ Signaling

Shyam Nyati; Katrina A. Schinske; Dipankar Ray; Mukesh K. Nyati; Brian D. Ross; Alnawaz Rehemtulla

Purpose: The dual modality of TGFβ, both as a potent tumor suppressor and a stimulator of tumor progression, invasion, and metastasis, make it a critical target for therapeutic intervention in human cancers. The ability to carry out real-time, noninvasive imaging of TGFβ-activated Smad signaling in live cells and animal models would significantly improve our understanding of the regulation of this unique signaling cascade. To advance these efforts, we developed a highly sensitive molecular imaging tool that repetitively, noninvasively, and dynamically reports on TGFBR1 kinase activity. Experimental Design: The bioluminescent TGFβR1 reporter construct was developed using a split firefly luciferase gene containing a functional sensor of Smad2 phosphorylation, wherein inhibition of TGFβ receptor1 kinase activity leads to an increase in reporter signaling. The reporter was stably transfected into mammalian cells and used to image in vivo and in vitro bioluminescent activity as a surrogate for monitoring TGFBR1 kinase activity. Results: The reporter was successfully used to monitor direct and indirect inhibition of TGFβ-induced Smad2 and SMAD3 phosphorylation in live cells and tumor xenografts and adapted for high-throughput screening, to identify a role for receptor tyrosine kinase inhibitors as modulators of TGFβ signaling. Conclusion: The reporter is a dynamic, noninvasive imaging modality for monitoring TGFβ-induced Smad2 signaling in live cells and tumor xenografts. It has immense potential for identifying novel effectors of R-Smad phosphorylation, for validating drug–target interaction, and for studying TGFβ signaling in different metastasis models. Clin Cancer Res; 17(23); 7424–39. ©2011 AACR.


Analytical Biochemistry | 2010

Molecular imaging of glycogen synthase kinase-3β and casein kinase-1α kinases

Shyam Nyati; Rajesh Ranga; Brian D. Ross; Alnawaz Rehemtulla; Mahaveer S. Bhojani

Glycogen synthase kinase-3beta (GSK3beta) and casein kinase-1alpha (CK1alpha) are multifunctional kinases that play critical roles in the regulation of a number of cellular processes. In spite of their importance, molecular imaging tools for noninvasive and real-time monitoring of their kinase activities have not been devised. Here we report development of the bioluminescent GSK3beta and CK1alpha reporter (BGCR) based on firefly luciferase complementation. Treatment of SW620 cells stably expressing the reporter with inhibitors of GSK3beta (SB415286 and LiCl) or CK1alpha (CKI-7) resulted in dose- and time-dependent increases in BGCR activity that were validated using Western blotting. No increase in bioluminescence was observed in the case of S37A mutant (GSK3beta inhibitors) or S45A mutant (CKI-7), demonstrating the specificity of the reporter. Imaging of mice tumor xenograft generated with BGCR-expressing SW620 cells following treatment with LiCl showed unique oscillations in GSK3beta activity that were corroborated by phosphorylated GSK3beta immunoblotting. Taken together, the BGCR is a novel molecular imaging tool that reveals unique insight into GSK3beta and CK1alpha kinase activities and may provide a powerful tool in experimental therapeutics for rapid optimization of dose and schedule of targeted therapies and for monitoring therapeutic response.


Molecular Cancer Therapeutics | 2011

A novel kinase inhibitor of FADD phosphorylation chemosensitizes through the inhibition of NF-κB.

Katrina A. Schinske; Shyam Nyati; Amjad P. Khan; Terence M. Williams; Timothy D. Johnson; Brian D. Ross; Ricardo Pérez Tomás; Alnawaz Rehemtulla

Fas-associated protein with death domain (FADD) is a cytosolic adapter protein essential for mediating death receptor–induced apoptosis. It has also been implicated in a number of nonapoptotic activities including embryogenesis, cell-cycle progression, cell proliferation, and tumorigenesis. Our recent studies have shown that high levels of phosphorylated FADD (p-FADD) in tumor cells correlate with increased activation of the antiapoptotic transcription factor NF-κB and is a biomarker for aggressive disease and poor clinical outcome. These findings suggest that inhibition of FADD phosphorylation is a viable target for cancer therapy. A high-throughput screen using a cell-based assay for monitoring FADD-kinase activity identified NSC 47147 as a small molecule inhibitor of FADD phosphorylation. The compound was evaluated in live cells and mouse tumors for its efficacy as an inhibitor of FADD-kinase activity through the inhibition of casein kinase 1α. NSC 47147 was shown to decrease levels of p-FADD and NF-κB activity such that combination therapy leads to greater induction of apoptosis and enhanced tumor control than either agent alone. The studies described here show the utility of bioluminescent cell–based assays for the identification of active compounds and the validation of drug–target interaction in a living subject. In addition, the presented results provide proof-of-principle studies as to the validity of targeting FADD-kinase activity as a novel cancer therapy strategy. Mol Cancer Ther; 10(10); 1807–17. ©2011 AACR.


Journal of Phycology | 2013

Phylogenetic analysis of LSU and SSU rDNA group I introns of lichen photobionts associated with the genera Xanthoria and Xanthomendoza (Teloschistaceae, lichenized Ascomycetes).

Shyam Nyati; Debashish Bhattacharya; Silke Werth; Rosmarie Honegger

We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen‐forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU‐encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the internal transcribed spacer region, indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high‐sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta.


International Journal of Radiation Oncology Biology Physics | 2013

Molecular Imaging of the ATM Kinase Activity

Terence M. Williams; Shyam Nyati; Brian D. Ross; Alnawaz Rehemtulla

PURPOSE Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. METHODS AND MATERIALS Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. RESULTS Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. CONCLUSIONS We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.


Journal of Biomolecular Screening | 2010

High Throughput Molecular Imaging for the Identification of FADD Kinase Inhibitors

Amjad P. Khan; Katrina A. Schinske; Shyam Nyati; Mahaveer S. Bhojani; Brian D. Ross; Alnawaz Rehemtulla

Fas-associated protein with death domain (FADD) was originally reported as a proapoptotic adaptor molecule that mediates receptor-induced apoptosis. Recent studies have revealed a potential role of FADD in NF-κB activation, embryogenesis, and cell cycle regulation and proliferation. Overexpression of FADD and its phosphorylation have been associated with the transformed phenotype in many cancers and is therefore a potential target for therapeutic intervention. In an effort to delineate signaling events that lead to FADD phosphorylation and to identify novel compounds that impinge on this pathway, the authors developed a cell-based reporter for FADD kinase activity. The reporter assay, optimized for a high-throughput screen (HTS), measures bioluminescence in response to modulation of FADD kinase activity in live cells. In addition, the potential use of the reporter cell line in the rapid evaluation of pharmacologic properties of HTS hits in mouse models has been demonstrated.


Cancer Cell International | 2010

Novel molecular imaging platform for monitoring oncological kinases

Shyam Nyati; Brian D. Ross; Alnawaz Rehemtulla; Mahaveer S. Bhojani

Recent advances in oncology have lead to identification of a plethora of alterations in signaling pathways that are critical to oncogenesis and propagation of malignancy. Among the biomarkers identified, dysregulated kinases and associated changes in signaling cascade received the lions share of scientific attention and have been under extensive investigations with goal of targeting them for anti-cancer therapy. Discovery of new drugs is immensely facilitated by molecular imaging technology which enables non-invasive, real time, dynamic imaging and quantification of kinase activity. Here, we review recent development of novel kinase reporters based on conformation dependent complementation of firefly luciferase to monitor kinase activity. Such reporter system provides unique insights into the pharmacokinetics and pharmacodynamics of drugs that modulate kinase signaling and have a huge potential in drug discovery, validation, and drug-target interactions.

Collaboration


Dive into the Shyam Nyati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lori J. Pierce

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Meilan Liu

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge