Shyamal Kumar Paul
Mymensingh Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shyamal Kumar Paul.
Journal of General Virology | 2010
Souvik Ghosh; Mohammed Mahbub Alam; Muzahed Uddin Ahmed; Rafiqul Islam Talukdar; Shyamal Kumar Paul; Nobumichi Kobayashi
This study reports the first complete genome sequence of a caprine group A rotavirus (GAR) strain, GO34. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of strain GO34, detected in Bangladesh, were assigned to the G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotypes, respectively. Strain GO34 was closely related to the VP4, VP6-7 and NSP4-5 genes of bovine GARs and the NSP1 gene of GO34 to an ovine GAR. Strain GO34 shared low nucleotide sequence identities (<90 %) with VP2-3 genes of other GARs, and was equally related to NSP3 genes of human, ruminant and camelid strains. The VP1, VP6 and NSP2 genes of strain GO34 also exhibited a close genetic relatedness to human G2, G6, G8 and G12 DS-1-like GARs, whereas the NSP1 of GO34 was also closely related to human G6P[14] strains. All these findings point to a common evolutionary origin of GO34 and bovine, ovine, antelope, guanaco and human G6P[14] GARs, although phylogenetically GO34 is not particularly closely related to any other rotavirus strains known to date.
Archives of Virology | 2008
Shyamal Kumar Paul; Nobumichi Kobayashi; Shigeo Nagashima; Masaho Ishino; Shojiro Watanabe; Mohammed Mahbub Alam; Muzahed Uddin Ahmed; Mohammad Akram Hossain; Trailokya Nath Naik
To clarify the phylogenetic relatedness of rotaviruses causing gastroenteritis in children and adults, an epidemiologic investigation was conducted in Mymensingh, Bangladesh, during the period between July 2004 and June 2006. A total of 2,540 stool specimens from diarrheal patients from three hospitals were analyzed. Overall, rotavirus-positive rates in children and adults were 26.4 and 10.1%, respectively. Among the 155 rotavirus specimens examined genetically from both children and adults, the most frequent G genotype was G2 (detection rate: 54.0 and 47.6%, respectively), followed by G1 (21.2 and 26.2%, respectively), and G9 (15.9 and 9.5%, respectively). G12 was also detected in five specimens (3.2% in total; four children and one adult). Sequence identities of VP7 genes of G2 rotaviruses from children and adults were higher than 97.8%, while these Bangladeshi G2 viruses showed generally lower identities to G2 rotaviruses reported elsewhere in the world, except for some strains reported in African countries. Similarly, extremely high sequence identities between children and adults were observed for VP7 genes of G1, G9 and G12 rotaviruses, and also for the VP4 genes of P[4], P[6], and P[8] viruses. Rotaviruses from children and adults detected in this study were included in a single cluster in phylogenetic dendrograms of VP7 or VP4 genes of individual G/P types. Rotaviruses with two emerging types, G9 and G12, had VP7 genes that were phylogenetically close to those of individual G-types recently reported in Bangladesh and India and were included in the globally spreading lineages of these G-types. These findings suggested that genetically identical rotaviruses, including those with the emerging types G9 and G12, were circulating among children and adults in city and rural areas of Bangladesh.
Journal of Medical Virology | 2008
Shigeo Nagashima; Nobumichi Kobayashi; Masaho Ishino; Mohammed Mahbub Alam; Muzahed Uddin Ahmed; Shyamal Kumar Paul; Balasubramanian Ganesh; Mamta Chawla-Sarkar; Triveni Krishnan; Trailokya Nath Naik; Yuan-Hong Wang
Novel rotavirus strains B219 and ADRV‐N derived from adult diarrheal cases in Bangladesh and China, respectively, are considered to belong to a novel rotavirus group (species) distinct from groups A, B, and C, by genetic analysis of five viral genes encoding VP6, VP7, NSP1, NSP2, and NSP3. In this study, the nucleotide sequences of the remaining six B219 gene segments encoding VP1, VP2, VP3, VP4, NSP4, and NSP5 were determined. The nucleotide sequences of the group B human rotavirus VP1 and VP3 genes were also determined in order to compare the whole genome of B219 with those of group A, B, and C rotavirus genomes. The nucleotide and deduced amino acid sequences of all B219 gene segments showed considerable identity to the ADRV‐N (strain J19) sequences (87.7–94.3% and 88.7–98.7%, respectively). In contrast, sequence identity to groups A–C rotavirus genes was less than 61%. However, functionally important domains and structural characteristics in VP1‐VP4, NSP4, and NSP5, which are conserved in group A, B, or C rotaviruses, were also found in the deduced amino acid sequences of the B219 proteins. Hence, the basic structures of all B219 viral proteins are considered to be similar to those of the known rotavirus groups. J. Med. Virol. 80:2023–2033, 2008.
Archives of Virology | 2007
M. M. Alam; Nobumichi Kobayashi; Masaho Ishino; M. S. Ahmed; Muzahed Uddin Ahmed; Shyamal Kumar Paul; B. K. Muzumdar; Z. Hussain; Yuan-Hong Wang; Trailokya Nath Naik
Summary.An unusual human rotavirus strain B219 was detected in a stool specimen from a 65-year old patient with diarrhea in Bangladesh during April 2002. Cloning and sequence analysis of five genes of the B219 strain indicated that this virus is genetically closely related to the ADRV-N strain, which caused an adult diarrhea outbreak in China, but distinct from groups A, B, and C rotaviruses known to cause diarrheal diseases in humans. Accordingly, rotavirus strains B219 and ADRV-N were considered to belong to a novel group of human rotavirus, and the ADRV-N-like novel human rotaviruses were suggested to be distributed to a geographically wider area.
Journal of General Virology | 2011
Dai Yamamoto; Souvik Ghosh; Mitsutaka Kuzuya; Yuan-Hong Wang; Xuan Zhou; Mamta Chawla-Sarkar; Shyamal Kumar Paul; Masaho Ishino; Nobumichi Kobayashi
Group C rotavirus (GCRV) is distributed worldwide as an enteric pathogen in humans and animals. However, to date, whole-genome sequences are available only for a human strain (Bristol) and a porcine strain (Cowden). To investigate the genetic diversity of human GCRVs, nearly full-length sequences of all 11 RNA segments were determined for human GCRVs detected recently in India (v508), Bangladesh (BS347), China (Wu82 and YNR001) and Japan (OH567 and BK0830) and analysed phylogenetically with sequence data for GCRVs published previously. All the RNA segments of human GCRV strains except for the VP3 gene showed high levels of conservation (>93 % nucleotide sequence identity, >92 % amino acid sequence identity), belonging to a single genetic cluster distinct from those of animal GCRVs. In contrast, the VP3 genes of human GCRVs could be discriminated into two clusters, designated M2 and M3, that were distinguished phylogenetically from those of porcine and bovine GCRVs (clusters M1 and M4, respectively). Between M2 and M3, amino acid sequence identity of the VP3 gene was 84.1-84.7 %, whereas high identities were observed within each cluster (92.3-97.6 % for M2, 98.2-99.3 % for M3). Sequence divergence among the four VP3 clusters was observed throughout the amino acid sequence except for conserved motifs, including those possibly related to enzyme functions of VP3. The presence of obvious genetic diversity only in the VP3 gene among human GCRVs suggested that either the M2 or M3 VP3 gene of human GCRVs might have been derived through reassortment from an animal GCRV or from an unidentified human GCRV strain belonging to a novel genogroup.
Microbial Drug Resistance | 2011
Noriko Urushibara; Shyamal Kumar Paul; Mohammad Akram Hossain; Mitsuyo Kawaguchiya; Nobumichi Kobayashi
Methicillin resistance in staphylococci is conferred by the acquisition in its chromosome of the mecA gene, which is located on a mobile genetic element called staphylococcal cassette chromosome mec (SCCmec). Genetic type of SCCmec is defined by combination of mec gene complex class and cassette chromosome recombinase gene (ccr) allotype. In this study, we analyzed genetic diversity of the SCCmec in 11 Staphylococcus haemolyticus strains and a Staphylococcus sciuri strain, which were recently isolated from clinical specimens in Bangladesh. Among these strains, only two S. haemolyticus strains were proved to have the known types of SCCmec, that is, SCCmec V (class C2 mec-ccrC) and VII (class C1 mec-ccrC). Five S. haemolyticus strains were assigned two unique mec-ccr gene complexes combination; that is, class C1 mec-ccrA4B4 (four isolates) and class A mec-ccrC (one isolate). In the remaining four S. haemolyticus strains with class C1 mec, no known ccr allotypes could be detected. A single S. sciuri strain with class A mec complex carried a ccrA gene belonging to a novel allotype designated ccrA7, together with ccrB3. The ccrA7 gene in the S. sciuri strain showed 61.7%-82.7% sequence identity to the ccrA gene sequences published so far, and 75.3% identity to ccrA3, which is a component of the type 3 ccr complex (ccrA3-ccrB3) in methicillin-resistant Staphylococcus aureus. The results of the present study indicated that mec gene complex and ccr genes in coagulase-negative staphylococci are highly divergent, and distinct from those of common methicillin-resistant S. aureus. Identification of the novel ccrA7 allotype combined with ccrB3 suggested an occurrence of recombination between different ccr complexes in nature.
Journal of General Virology | 2011
Souvik Ghosh; Shyamal Kumar Paul; Mohammad Akram Hossain; Mohammed Mahbub Alam; Muzahed Uddin Ahmed; Nobumichi Kobayashi
Although G2P[4] rotaviruses are common causes of infantile diarrhoea, to date only the full genomes of the prototype (strain DS-1) and another old strain, TB-Chen, have been analysed. We report here the full genomic analyses of two Bangladeshi G2P[4] strains, MMC6 and MMC88, detected in 2005. Both the strains exhibited a DS-1-like genotype constellation. Excluding the VP4 and VP7 genes, and except for VP3 of MMC88, the MMC strains were genetically more closely related to the contemporary G2P[4] and several non-G2P[4] human strains than the prototype G2P[4] strain. However, by phylogenetic analyses, the VP2, VP3 (except MMC88), NSP1 and NSP3-5 genes of these strains appeared to share a common origin with those of the prototype strain, whilst their VP1, VP6 and NSP2 genes clustered near a caprine strain. The VP3 gene of MMC88 exhibited maximum relatedness to a local caprine strain, representing the first reported human G2P[4] strain with a gene of animal origin.
Archives of Virology | 2009
Shigeo Nagashima; Nobumichi Kobayashi; Shyamal Kumar Paul; Mohammed Mahbub Alam; Mamta Chawla-Sarkar; Triveni Krishnan
The G1 and G9 rotavirus strains MMC71 and MMC38 (subgroup II, NSP4 genogroup B), respectively, isolated from children in Bangladesh, were analyzed genetically. Full-length VP4 genes of these strains had 98.9% identity to each other and showed 83.9–89.4% identity to those of the P[4] and P[8] rotaviruses. Phylogenetic analysis of VP4 nucleotide sequences revealed that strains MMC38 and MMC71 were located in a lineage of P[8] strains. However, the cluster was highly divergent from the previously established P[8] strains. The VP8* portions of strains MMC38 and MMC71 showed more than 93.9% nucleotide sequence identity to OP354-like P[8] strains, and these strains were clustered into the same lineage. These findings indicate that the VP4 of these strains should be classified into a subtype of the P[8] genotype (P[8]b) that is distinct from that of common P[8] rotaviruses (P[8]a).
Infection, Genetics and Evolution | 2011
Souvik Ghosh; Shyamal Kumar Paul; Dai Yamamoto; Shigeo Nagashima; Nobumichi Kobayashi
Rotaviruses with the P[8] VP4 genotype are a major cause of acute infantile diarrhea. The P[8] genotype is classified into two genetically distinct subtypes, P[8]a and P[8]b. Most of the P[8] strains belong to subtype P[8]a, whilst P[8]b strains are rare. To date, the whole genomes of a few P[8]a strains have been analyzed, whilst there are no reports on full genomic analysis of the P[8]b strains. To determine the genetic makeup of the rare P[8]b strains and their overall genetic relatedness to the P[8]a strains, the present study analyzed the full genomes of a human G9P[8]b strain, MMC38, and a G1P[8]b strain, MMC71, detected in Bangladesh in 2005. By nucleotide sequence identities and phylogenetic analyses, strains MMC38 and MMC71 exhibited a human rotavirus Wa-like genotype constellation. Except for the VP4 gene, all the genes of strains MMC38 and MMC71 were closely related to cognate genes of the contemporary and more recent human Wa-like G1P[8]a, G9P[8]a, G11P[8]a, G11P[25], G12P[6] and G12P[8]a strains, including those from Bangladesh. Therefore, strains MMC38 and MMC71 possessed the genetically distinct P[8]b VP4 gene on a common human Wa-like genetic backbone, pointing towards their possible origin from reassortment events between common human Wa-like strains and unidentified rotavirus strains possessing the rare P[8]b-like VP4 gene. Since strains with this stable Wa-like genetic backbone can spread rapidly, and it is not certain as to whether the current rotavirus vaccines will be equally efficacious against the P[8]b strains as the P[8]a strains, proper detection of P[8]b strains and their whole genomic analyses might be of public health significance. To our knowledge, the present study is the first report on full genomic analysis of the rare P[8]b rotavirus strains.
Vector-borne and Zoonotic Diseases | 2016
Rajib Ahmed; Shyamal Kumar Paul; Muhammad Akram Hossain; Ahmed S; Muhammad Chand Mahmud; Syeda Anjuman Nasreen; Faria Ferdouse; Rumana Hasan Sharmi; Farid Ahamed; Souvik Ghosh; Noriko Urushibara; Meiji Soe Aung; Nobumichi Kobayashi
High prevalence of Rickettsia felis in patients with fever of unknown origin was revealed in the north-central Bangladesh from 2012 to 2013. Subsequently, in this study, prevalence of R. felis in cats and cat fleas (Ctenocephalides felis), together with febrile patients, was studied by PCR detection of 17 kDa antigen gene and DNA sequencing. R. felis was detected in 28% (28/100) and 21% (14/68) of cat blood and cat flea samples, respectively, whereas 42% (21/50) of patients were positive for R. felis. R. felis-positive cat fleas were detected at significantly higher rate on R. felis-positive cats. The results suggested a potential role of cats and cat fleas for transmission of R. felis to humans in Bangladesh.