Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shyra J. Miller is active.

Publication


Featured researches published by Shyra J. Miller.


Cancer Research | 2006

Large-Scale Molecular Comparison of Human Schwann Cells to Malignant Peripheral Nerve Sheath Tumor Cell Lines and Tissues

Shyra J. Miller; Fatima Rangwala; Jon P. Williams; Peter Ackerman; Sue Kong; Anil G. Jegga; Sergio Kaiser; Bruce J. Aronow; Silke Frahm; Lan Kluwe; Victor F. Mautner; Meena Upadhyaya; David Muir; Margaret R. Wallace; Jussara Hagen; Dawn E. Quelle; Mark A. Watson; Arie Perry; David H. Gutmann; Nancy Ratner

Malignant peripheral nerve sheath tumors (MPNST) are highly invasive soft tissue sarcomas that arise within the peripheral nerve and frequently metastasize. To identify molecular events contributing to malignant transformation in peripheral nerve, we compared eight cell lines derived from MPNSTs and seven normal human Schwann cell samples. We found that MPNST lines are heterogeneous in their in vitro growth rates and exhibit diverse alterations in expression of pRb, p53, p14(Arf), and p16(INK4a) proteins. All MPNST cell lines express the epidermal growth factor receptor and lack S100beta protein. Global gene expression profiling using Affymetrix oligonucleotide microarrays identified a 159-gene molecular signature distinguishing MPNST cell lines from normal Schwann cells, which was validated in Affymetrix microarray data generated from 45 primary MPNSTs. Expression of Schwann cell differentiation markers (SOX10, CNP, PMP22, and NGFR) was down-regulated in MPNSTs whereas neural crest stem cell markers, SOX9 and TWIST1, were overexpressed in MPNSTs. Previous studies have implicated TWIST1 in apoptosis inhibition, resistance to chemotherapy, and metastasis. Reducing TWIST1 expression in MPNST cells using small interfering RNA did not affect apoptosis or chemoresistance but inhibited cell chemotaxis. Our results highlight the use of gene expression profiling in identifying genes and molecular pathways that are potential biomarkers and/or therapeutic targets for treatment of MPNST and support the use of the MPNST cell lines as a primary analytic tool.


The Journal of Neuroscience | 2006

Neuregulin 1–erbB Signaling Is Necessary for Normal Myelination and Sensory Function

Suzhen Chen; Miguel Omar Velardez; Xavier Warot; Zhao Xue Yu; Shyra J. Miller; Didier Cros; Gabriel Corfas

To investigate the role of erbB signaling in the interactions between peripheral axons and myelinating Schwann cells, we generated transgenic mice expressing a dominant-negative erbB receptor in these glial cells. Mutant mice have delayed onset of myelination, thinner myelin, shorter internodal length, and smaller axonal caliber in adulthood. Consistent with the morphological defects, transgenic mice also have slower nerve conduction velocity and defects in their responses to mechanical stimulation. Molecular analysis indicates that erbB signaling may contribute to myelin formation by regulating transcription of myelin genes. Analysis of sciatic nerves showed a reduction in the levels of expression of myelin genes in mutant mice. In vitro assays revealed that neuregulin-1 (NRG1) induces expression of myelin protein zero (P0). Furthermore, we found that the effects of NRG1 on P0 expression depend on the NRG1 isoform used. When NRG1 is presented to Schwann cells in the context of cell–cell contact, type III but not type I NRG1 regulates P0 gene expression. These results suggest that disruption of the NRG1–erbB signaling pathway could contribute to the pathogenesis of peripheral neuropathies with hypomyelination and neuropathic pain.


Journal of Clinical Investigation | 2013

MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors

Walter J. Jessen; Shyra J. Miller; Edwin Jousma; Jianqiang Wu; Tilat A. Rizvi; Meghan E. Brundage; David Eaves; Brigitte C. Widemann; Mi-Ok Kim; Eva Dombi; Jessica Sabo; Atira Hardiman Dudley; Michiko Niwa-Kawakita; Grier P. Page; Marco Giovannini; Bruce J. Aronow; Timothy P. Cripe; Nancy Ratner

Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1(fl/fl);Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials.


Nature Reviews Cancer | 2015

A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor

Nancy Ratner; Shyra J. Miller

Neurofibromatosis type 1 (NF1) is a common genetic disorder that predisposes affected individuals to tumours. The NF1 gene encodes a RAS GTPase-activating protein called neurofibromin and is one of several genes that (when mutant) affect RAS–MAPK signalling, causing related diseases collectively known as RASopathies. Several RASopathies, beyond NF1, are cancer predisposition syndromes. Somatic NF1 mutations also occur in 5–10% of human sporadic cancers and may contribute to resistance to therapy. To highlight areas for investigation in RASopathies and sporadic tumours with NF1 mutations, we summarize current knowledge of NF1 disease, the NF1 gene and neurofibromin, neurofibromin signalling pathways and recent developments in NF1 therapeutics.


Embo Molecular Medicine | 2009

Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene

Shyra J. Miller; Walter J. Jessen; Tapan Mehta; Atira Hardiman; Emily Sites; Sergio Kaiser; Anil G. Jegga; Hua Li; Meena Upadhyaya; Marco Giovannini; David Muir; Margaret R. Wallace; Eva Lopez; Eduard Serra; G. Petur Nielsen; Conxi Lázaro; Anat Stemmer-Rachamimov; Grier P. Page; Bruce J. Aronow; Nancy Ratner

Understanding the biological pathways critical for common neurofibromatosis type 1 (NF1) peripheral nerve tumours is essential, as there is a lack of tumour biomarkers, prognostic factors and therapeutics. We used gene expression profiling to define transcriptional changes between primary normal Schwann cells (n = 10), NF1‐derived primary benign neurofibroma Schwann cells (NFSCs) (n = 22), malignant peripheral nerve sheath tumour (MPNST) cell lines (n = 13), benign neurofibromas (NF) (n = 26) and MPNST (n = 6). Dermal and plexiform NFs were indistinguishable. A prominent theme in the analysis was aberrant differentiation. NFs repressed gene programs normally active in Schwann cell precursors and immature Schwann cells. MPNST signatures strongly differed; genes up‐regulated in sarcomas were significantly enriched for genes activated in neural crest cells. We validated the differential expression of 82 genes including the neural crest transcription factor SOX9 and SOX9 predicted targets. SOX9 immunoreactivity was robust in NF and MPSNT tissue sections and targeting SOX9 – strongly expressed in NF1‐related tumours – caused MPNST cell death. SOX9 is a biomarker of NF and MPNST, and possibly a therapeutic target in NF1.


Oncogene | 2010

Inhibition of Eyes Absent Homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis.

Shyra J. Miller; Zheng D. Lan; Atira Hardiman; Jianqiang Wu; Jennifer J. Kordich; Deanna M. Patmore; Rashmi S. Hegde; Timothy P. Cripe; Jose A. Cancelas; Margaret H. Collins; Nancy Ratner

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas without effective therapeutics. Bioinformatics was used to identify potential therapeutic targets. Paired Box (PAX), Eyes Absent (EYA), Dachsund (DACH) and Sine Oculis (SIX) genes, which form a regulatory interactive network in Drosophila, were found to be dysregulated in human MPNST cell lines and solid tumors. We identified a decrease in DACH1 expression, and increases in the expressions of PAX6, EYA1, EYA2, EYA4, and SIX1–4 genes. Consistent with the observation that half of MPNSTs develop in neurofibromatosis type 1 (NF1) patients, subsequent to NF1 mutation, we found that exogenous expression of the NF1-GTPase activating protein-related domain normalized DACH1 expression. EYA4 mRNA was elevated more than 100-fold as estimated by quantitative real-time PCR in most MPNST cell lines. In vitro, suppression of EYA4 expression using short hairpin RNA reduced cell adhesion and migration and caused cellular necrosis without affecting cell proliferation or apoptotic cell death. MPNST cells expressing shEYA4 either failed to form tumors in nude mice or formed very small tumors, with extensive necrosis but similar levels of proliferation and apoptosis as control cells. Our findings identify a role of EYA4 and possibly interacting SIX and DACH proteins in MPNSTs and suggest the EYA4 pathway as a rational therapeutic target.


Otology & Neurotology | 2008

Phosphatidylinositol 3-kinase/AKT pathway activation in human vestibular schwannoma.

Abraham Jacob; Tina X. Lee; Brian A. Neff; Shyra J. Miller; Bradley Welling; Long-Sheng Chang

Hypothesis: The neurofibromatosis 2 gene, which encodes the tumor suppressor protein merlin, is frequently mutated in vestibular schwannomas (VS). Merlin can inhibit phosphatidylinositol 3 kinase (PI3 kinase) by binding to PI3 kinase enhancer long isoform. Therefore, we hypothesized that the PI3 kinase/AKT pathway is activated in VS. Background: Despite advances in diagnosis and treatment, VS continue to cause patient morbidity. A more thorough understanding of the signaling pathways deregulated in VS will aid in the development of novel medical therapeutics. Activation of the PI3 kinase/AKT pathway increases cell survival and cell proliferation and has been observed in a variety of human cancers. However, whether the PI3 kinase/AKT pathway is activated in human VS has not been reported. Methods: Complementary deoxyribonucleic acid microarrays were performed using cultured Schwann cells, 4 VS specimens, and 2 paired normal vestibular nerves. Immunohistochemical analysis using antibodies to activated phosphorylated-AKT was performed on 14 VS tissue sections. Western blots using various antibodies to components of the PI3 kinase/AKT pathways were conducted. Results: Microarray analysis demonstrated that total AKT gene expression was upregulated in VS, compared with normal vestibular nerves. Immunohistochemical analysis of 14 VS tissue sections detected positive staining for activated AKT phosphorylated at both serine-473 and threonine-308 in all tumors. Western blots comparing VS specimens with normal vestibular nerves showed that the AKT pathway was activated in VS but not in normal nerve. Total AKT, phosphorylated-AKT, PI3-kinase, phosphorylated-phosphatase and tensin homologue deleted on chromosome 10, phosphorylated-phosphoinositide-dependent protein kinase 1, phosphorylated-forkhead box O, phosphorylated-glycogen synthase kinase 3&bgr;, and phosphorylated-mammalian target of rapamycin were upregulated in VS. Conclusion: The PI3 kinase/AKT pathway is activated in VS. Using our recently reported quantifiable VS xenograft model, novel inhibitors of the PI3 kinase/AKT pathway may be tested for VS growth inhibition in vivo.


Clinical Cancer Research | 2012

Ras-Driven Transcriptome Analysis Identifies Aurora Kinase A as a Potential Malignant Peripheral Nerve Sheath Tumor Therapeutic Target

Ami V. Patel; David Eaves; Walter J. Jessen; Tilat A. Rizvi; Jeffrey Ecsedy; Mark G. Qian; Bruce J. Aronow; John P. Perentesis; Eduard Serra; Timothy P. Cripe; Shyra J. Miller; Nancy Ratner

Purpose: Patients with neurofibromatosis type 1 (NF1) develop malignant peripheral nerve sheath tumors (MPNST), which are often inoperable and do not respond well to current chemotherapies or radiation. The goal of this study was to use comprehensive gene expression analysis to identify novel therapeutic targets. Experimental Design: Nerve Schwann cells and/or their precursors are the tumorigenic cell types in MPNST because of the loss of the NF1 gene, which encodes the RasGAP protein neurofibromin. Therefore, we created a transgenic mouse model, CNP-HRas12V, expressing constitutively active HRas in Schwann cells and defined a Ras-induced gene expression signature to drive a Bayesian factor regression model analysis of differentially expressed genes in mouse and human neurofibromas and MPNSTs. We tested functional significance of Aurora kinase overexpression in MPNST in vitro and in vivo using Aurora kinase short hairpin RNAs (shRNA) and compounds that inhibit Aurora kinase. Results: We identified 2,000 genes with probability of linkage to nerve Ras signaling of which 339 were significantly differentially expressed in mouse and human NF1-related tumor samples relative to normal nerves, including Aurora kinase A (AURKA). AURKA was dramatically overexpressed and genomically amplified in MPNSTs but not neurofibromas. Aurora kinase shRNAs and Aurora kinase inhibitors blocked MPNST cell growth in vitro. Furthermore, an AURKA selective inhibitor, MLN8237, stabilized tumor volume and significantly increased survival of mice with MPNST xenografts. Conclusion: Integrative cross-species transcriptome analyses combined with preclinical testing has provided an effective method for identifying candidates for molecular-targeted therapeutics. Blocking Aurora kinases may be a viable treatment platform for MPNST. Clin Cancer Res; 18(18); 5020–30. ©2012 AACR.


Molecular and Cellular Biology | 2003

Brain lipid binding protein in axon-Schwann cell interactions and peripheral nerve tumorigenesis.

Shyra J. Miller; Hongzhen Li; Tilat A. Rizvi; Yuan Huang; Gunnar Johansson; Jason Bowersock; Amer Sidani; John Vitullo; Kristine S. Vogel; Linda M. Parysek; Jeffrey E. DeClue; Nancy Ratner

ABSTRACT Loss of axonal contact characterizes Schwann cells in benign and malignant peripheral nerve sheath tumors (MPNST) from neurofibromatosis type 1 (NF1) patients. Tumor Schwann cells demonstrate NF1 mutations, elevated Ras activity, and aberrant epidermal growth factor receptor (EGFR) expression. Using cDNA microarrays, we found that brain lipid binding protein (BLBP) is elevated in an EGFR-positive subpopulation of Nf1 mutant mouse Schwann cells (Nf1 −/− TXF) that grows away from axons; BLBP expression was not affected by farnesyltransferase inhibitor, an inhibitor of H-Ras. BLBP was also detected in EGFR-positive cell lines derived from Nf1:p53 double mutant mice and human MPNST. BLBP expression was induced in normal Schwann cells following transfection with EGFR but not H-Ras12V. Furthermore, EGFR-mediated BLBP expression was not inhibited by dominant-negative H-Ras, indicating that BLBP expression is downstream of Ras-independent EGFR signaling. BLBP-blocking antibodies enabled process outgrowth from Nf1 −/− TXF cells and restored interaction with axons, without affecting cell proliferation or migration. Following injury, BLBP expression was induced in normal sciatic nerves when nonmyelinating Schwann cells remodeled their processes. These data suggest that BLBP, stimulated by Ras-independent pathways, regulates Schwann cell-axon interactions in normal peripheral nerve and peripheral nerve tumors.


Clinical Cancer Research | 2010

Gene Expression Analysis Identifies Potential Biomarkers of Neurofibromatosis Type 1 Including Adrenomedullin

Trent R. Hummel; Walter J. Jessen; Shyra J. Miller; Lan Kluwe; Victor F. Mautner; Margaret R. Wallace; Conxi Lázaro; Grier P. Page; Paul Worley; Bruce J. Aronow; Elizabeth K. Schorry; Nancy Ratner

Purpose: Plexiform neurofibromas (pNF) are Schwann cell tumors found in a third of individuals with neurofibromatosis type 1 (NF1). pNF can undergo transformation to malignant peripheral nerve sheath tumors (MPNST). There are no identified serum biomarkers of pNF tumor burden or transformation to MPNST. Serum biomarkers would be useful to verify NF1 diagnosis, monitor tumor burden, and/or detect transformation. Experimental Design: We used microarray gene expression analysis to define 92 genes that encode putative secreted proteins in neurofibroma Schwann cells, neurofibromas, and MPNST. We validated differential expression by quantitative reverse transcription-PCR, Western blotting, and ELISA assays in cell conditioned medium and control and NF1 patient sera. Results: Of 13 candidate genes evaluated, only adrenomedullin (ADM) was confirmed as differentially expressed and elevated in serum of NF1 patients. ADM protein concentrati on was further elevated in serum of a small sampling of NF1 patients with MPNST. MPNST cell conditioned medium, containing ADM and hepatocyte growth factor, stimulated MPNST migration and endothelial cell proliferation. Conclusions: Thus, microarray analysis identifies potential serum biomarkers for disease, and ADM is a serum biomarker of NF1. ADM serum levels do not seem to correlate with the presence of pNFs but may be a biomarker of transformation to MPNST. Clin Cancer Res; 16(20); 5048–57. ©2010 AACR.

Collaboration


Dive into the Shyra J. Miller's collaboration.

Top Co-Authors

Avatar

Nancy Ratner

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tilat A. Rizvi

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bruce J. Aronow

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Timothy P. Cripe

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Walter J. Jessen

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Debra A. Mayes

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey E. DeClue

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jianqiang Wu

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge