Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shyuan T. Ngo is active.

Publication


Featured researches published by Shyuan T. Ngo.


Frontiers in Neuroendocrinology | 2014

Gender differences in autoimmune disease

Shyuan T. Ngo; Frederik J. Steyn; Pamela A. McCombe

Autoimmune diseases are a range of diseases in which the immune response to self-antigens results in damage or dysfunction of tissues. Autoimmune diseases can be systemic or can affect specific organs or body systems. For most autoimmune diseases there is a clear sex difference in prevalence, whereby females are generally more frequently affected than males. In this review, we consider gender differences in systemic and organ-specific autoimmune diseases, and we summarize human data that outlines the prevalence of common autoimmune diseases specific to adult males and females in countries commonly surveyed. We discuss possible mechanisms for sex specific differences including gender differences in immune response and organ vulnerability, reproductive capacity including pregnancy, sex hormones, genetic predisposition, parental inheritance, and epigenetics. Evidence demonstrates that gender has a significant influence on the development of autoimmune disease. Thus, considerations of gender should be at the forefront of all studies that attempt to define mechanisms that underpin autoimmune disease.


Journal of the American Chemical Society | 2010

Solving the α-Conotoxin Folding Problem: Efficient Selenium-Directed On-Resin Generation of More Potent and Stable Nicotinic Acetylcholine Receptor Antagonists

Markus Muttenthaler; Simon T. Nevin; Anton A. Grishin; Shyuan T. Ngo; P. T. Choy; Norelle L. Daly; Shu-Hong Hu; Christopher J. Armishaw; C-I Anderson Wang; Richard J. Lewis; Jennifer L. Martin; Peter G. Noakes; David J. Craik; David J. Adams; Paul F. Alewood

Alpha-conotoxins are tightly folded miniproteins that antagonize nicotinic acetylcholine receptors (nAChR) with high specificity for diverse subtypes. Here we report the use of selenocysteine in a supported phase method to direct native folding and produce alpha-conotoxins efficiently with improved biophysical properties. By replacing complementary cysteine pairs with selenocysteine pairs on an amphiphilic resin, we were able to chemically direct all five structural subclasses of alpha-conotoxins exclusively into their native folds. X-ray analysis at 1.4 A resolution of alpha-selenoconotoxin PnIA confirmed the isosteric character of the diselenide bond and the integrity of the alpha-conotoxin fold. The alpha-selenoconotoxins exhibited similar or improved potency at rat diaphragm muscle and alpha3beta4, alpha7, and alpha1beta1 deltagamma nAChRs expressed in Xenopus oocytes plus improved disulfide bond scrambling stability in plasma. Together, these results underpin the development of more stable and potent nicotinic antagonists suitable for new drug therapies, and highlight the application of selenocysteine technology more broadly to disulfide-bonded peptides and proteins.


The Journal of Physiology | 2010

Patient autoantibodies deplete postsynaptic muscle‐specific kinase leading to disassembly of the ACh receptor scaffold and myasthenia gravis in mice

R. N. Cole; Nazanin Ghazanfari; Shyuan T. Ngo; Othon L. Gervásio; Stephen W. Reddel; William D. Phillips

The postsynaptic muscle‐specific kinase (MuSK) coordinates formation of the neuromuscular junction (NMJ) during embryonic development. Here we have studied the effects of MuSK autoantibodies upon the NMJ in adult mice. Daily injections of IgG from four MuSK autoantibody‐positive myasthenia gravis patients (MuSK IgG; 45 mg day−1 i.p. for 14 days) caused reductions in postsynaptic ACh receptor (AChR) packing as assessed by fluorescence resonance energy transfer (FRET). IgG from the patients with the highest titres of MuSK autoantibodies caused large (51–73%) reductions in postsynaptic MuSK staining (cf. control mice; P < 0.01) and muscle weakness. Among mice injected for 14 days with control and MuSK patient IgGs, the residual level of MuSK correlated with the degree of impairment of postsynaptic AChR packing. However, the loss of postsynaptic MuSK preceded this impairment of postsynaptic AChR. When added to cultured C2 muscle cells the MuSK autoantibodies caused tyrosine phosphorylation of MuSK and the AChR β‐subunit, and internalization of MuSK from the plasma membrane. The results suggest a pathogenic mechanism in which MuSK autoantibodies rapidly deplete MuSK from the postsynaptic membrane leading to progressive dispersal of postsynaptic AChRs. Moreover, maintenance of postsynaptic AChR packing at the adult NMJ would appear to depend upon physical engagement of MuSK with the AChR scaffold, notwithstanding activation of the MuSK‐rapsyn system of AChR clustering.


Neuron | 2007

Rapsyn Interaction with Calpain Stabilizes AChR Clusters at the Neuromuscular Junction

Fei Chen; Lei Qian; Zhi Hua Yang; Ying Huang; Shyuan T. Ngo; Nan Jie Ruan; Jia Wang; Claudio Schneider; Peter G. Noakes; Yu-qiang Ding; Lin Mei; Zhen-Ge Luo

Agrin induces, whereas acetylcholine (ACh) disperses, ACh receptor (AChR) clusters during neuromuscular synaptogenesis. Such counteractive interaction leads to eventual dispersal of nonsynaptic AChR-rich sites and formation of receptor clusters at the postjunctional membrane. However, the underlying mechanisms are not well understood. Here we show that calpain, a calcium-dependent protease, is activated by the cholinergic stimulation and is required for induced dispersion of AChR clusters. Interestingly, the AChR-associated protein rapsyn interacted with calpain in an agrin-dependent manner, and this interaction inhibited the protease activity of calpain. Disrupting the endogenous rapsyn/calpain interaction enhanced CCh-induced dispersion of AChR clusters. Moreover, the loss of AChR clusters in agrin mutant mice was partially rescued by the inhibition of calpain via overexpressing calpastatin, an endogenous calpain inhibitor, or injecting calpeptin, a cell-permeable calpain inhibitor. These results demonstrate that calpain participates in ACh-induced dispersion of AChR clusters, and rapsyn stabilizes AChR clusters by suppressing calpain activity.


Endocrinology | 2011

Development of a Method for the Determination of Pulsatile Growth Hormone Secretion in Mice

Frederik J. Steyn; Lili Huang; Shyuan T. Ngo; J. W. Leong; H. Y. Tan; T. Y. Xie; Albert F. Parlow; Johannes D. Veldhuis; Michael J. Waters; Chen Chen

Measures of pulsatile GH secretion require frequent collection and analysis of blood samples at regular intervals. Due to blood volume constraints, repeat measures of circulating levels of GH in mice remain challenging. Consequently, few observations exist in which the pulsatile pattern of GH secretion in mice have been characterized. To address this, we developed a technique for the collection and analysis of circulating levels of GH at regular and frequent intervals in freely moving mice. This was achieved through the development of a sensitive assay for the detection of GH in small (2 μl) quantities of whole blood. The specificity and accuracy of this assay was validated following guidelines established for single-laboratory validation as specified by the International Union of Pure and Applied Chemistry. We incorporated an established method for tail-clip blood sample collection to determine circulating levels of GH secretion in 36 whole blood samples collected consecutively over a period of 6 h. Resulting measures were characterized by peak secretion periods and interpulse stable baseline secretion periods. Periods characterized by elevated whole blood GH levels consisted of multicomponent peaks. Deconvolution analysis of resulting measures confirmed key parameters associated with pulsatile GH secretion. We show a striking decrease in pulsatile GH secretion in mice after 12-18 h of fasting. This model is necessary to characterize the pulsatile profile of GH secretion in mice and will significantly contribute to current attempts to clarify mechanisms that contribute to the regulation of GH secretion.


Embo Molecular Medicine | 2015

A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis.

Lavinia Palamiuc; Anna Schlagowski; Shyuan T. Ngo; Aurélia Vernay; Sylvie Dirrig-Grosch; Alexandre Henriques; Anne-Laurence Boutillier; Joffrey Zoll; Andoni Echaniz-Laguna; Jean-Philippe Loeffler; Frédérique René

Amyotrophic lateral sclerosis (ALS) is the most common fatal motor neuron disease in adults. Numerous studies indicate that ALS is a systemic disease that affects whole body physiology and metabolic homeostasis. Using a mouse model of the disease (SOD1G86R), we investigated muscle physiology and motor behavior with respect to muscle metabolic capacity. We found that at 65 days of age, an age described as asymptomatic, SOD1G86R mice presented with improved endurance capacity associated with an early inhibition in the capacity for glycolytic muscle to use glucose as a source of energy and a switch in fuel preference toward lipids. Indeed, in glycolytic muscles we showed progressive induction of pyruvate dehydrogenase kinase 4 expression. Phosphofructokinase 1 was inhibited, and the expression of lipid handling molecules was increased. This mechanism represents a chronic pathologic alteration in muscle metabolism that is exacerbated with disease progression. Further, inhibition of pyruvate dehydrogenase kinase 4 activity with dichloroacetate delayed symptom onset while improving mitochondrial dysfunction and ameliorating muscle denervation. In this study, we provide the first molecular basis for the particular sensitivity of glycolytic muscles to ALS pathology.


The International Journal of Biochemistry & Cell Biology | 2011

Muscle specific kinase : organiser of synaptic membrane domains

Nazanin Ghazanfari; Kristine J. Fernandez; Yui Murata; Marco Morsch; Shyuan T. Ngo; Stephen W. Reddel; Peter G. Noakes; William D. Phillips

Muscle Specific Kinase (MuSK) is a transmembrane tyrosine kinase vital for forming and maintaining the mammalian neuromuscular junction (NMJ: the synapse between motor nerve and skeletal muscle). MuSK expression switches on during skeletal muscle differentiation. MuSK then becomes restricted to the postsynaptic membrane of the NMJ, where it functions to cluster acetylcholine receptors (AChRs). The expression, activation and turnover of MuSK are each regulated by signals from the motor nerve terminal. MuSK forms the core of an emerging signalling complex that can be acutely activated by neural agrin (N-agrin), a heparin sulfate proteoglycan secreted from the nerve terminal. MuSK activation initiates complex intracellular signalling events that coordinate the local synthesis and assembly of synaptic proteins. The importance of MuSK as a synapse organiser is highlighted by cases of autoimmune myasthenia gravis in which MuSK autoantibodies can deplete MuSK from the postsynaptic membrane, leading to complete disassembly of the adult NMJ.


Journal of Cell Science | 2012

Neuregulin-1 potentiates agrin-induced acetylcholine receptor clustering through muscle-specific kinase phosphorylation

Shyuan T. Ngo; R. N. Cole; Nana Sunn; William D. Phillips; Peter G. Noakes

At neuromuscular synapses, neural agrin (n-agrin) stabilizes embryonic postsynaptic acetylcholine receptor (AChR) clusters by signalling through the muscle-specific kinase (MuSK) complex. Live imaging of cultured myotubes showed that the formation and disassembly of primitive AChR clusters is a dynamic and reversible process favoured by n-agrin, and possibly other synaptic signals. Neuregulin-1 is a growth factor that can act through muscle ErbB receptor kinases to enhance synaptic gene transcription. Recent studies suggest that neuregulin-1–ErbB signalling can modulate n-agrin-induced AChR clustering independently of its effects on transcription. Here we report that neuregulin-1 increased the size of developing AChR clusters when injected into muscles of embryonic mice. We investigated this phenomenon using cultured myotubes, and found that in the ongoing presence of n-agrin, neuregulin-1 potentiates AChR clustering by increasing the tyrosine phosphorylation of MuSK. This potentiation could be blocked by inhibiting Shp2, a postsynaptic tyrosine phosphatase known to modulate the activity of MuSK. Our results provide new evidence that neuregulin-1 modulates the signaling activity of MuSK and hence might function as a second-order regulator of postsynaptic AChR clustering at the neuromuscular synapse. Thus two classic synaptic signalling systems (neuregulin-1 and n-agrin) converge upon MuSK to regulate postsynaptic differentiation.


Developmental Neurobiology | 2008

Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse

Jennifer Brockhausen; R. N. Cole; Othon L. Gervásio; Shyuan T. Ngo; Peter G. Noakes; William D. Phillips

Fluorescence resonance energy transfer (FRET) experiments at neuromuscular junctions in the mouse tibialis anterior muscle show that postsynaptic acetylcholine receptors (AChRs) become more tightly packed during the first month of postnatal development. Here, we report that the packing of AChRs into postsynaptic aggregates was reduced in 4‐week postnatal mice that had reduced amounts of the AChR‐associated protein, rapsyn, in the postsynaptic membrane (rapsyn+/− mice). We hypothesize that nerve‐derived agrin increases postsynaptic expression and targeting of rapsyn, which then drives the developmental increase in AChR packing. Neural agrin treatment elevated the expression of rapsyn in C2 myotubes by a mechanism that involved slowing of rapsyn protein degradation. Similarly, exposure of synapses in postnatal muscle to exogenous agrin increased rapsyn protein levels and elevated the intensity of anti‐rapsyn immunofluorescence, relative to AChR, in the postsynaptic membrane. This increase in the rapsyn‐to‐AChR immunofluorescence ratio was associated with tighter postsynaptic AChR packing and slowed AChR turnover. Acute blockade of synaptic AChRs with α‐bungarotoxin lowered the rapsyn‐to‐AChR immunofluorescence ratio, suggesting that AChR signaling also helps regulate the assembly of extra rapsyn in the postsynaptic membrane. The results suggest that at the postnatal neuromuscular synapse agrin signaling elevates the expression and targeting of rapsyn to the postsynaptic membrane, thereby packing more AChRs into stable, functionally‐important AChR aggregates.


Journal of the Neurological Sciences | 2014

Body mass index and dietary intervention: Implications for prognosis of amyotrophic lateral sclerosis

Shyuan T. Ngo; Frederik J. Steyn; Pamela A. McCombe

Amyotrophic lateral sclerosis (ALS) is an adult onset, neurodegenerative disease that is characterized by the loss of upper (corticospinal) and lower motor neurons. ALS is a multifactorial disease whereby a combination of genetic and environmental factors may contribute to disease pathogenesis. While the majority of studies indicate that the underlying causes for ALS pathology may be due to multiple defects at the cellular level, factors that have recently been identified to be associated with survival could lead to the development of beneficial interventions. In ALS, a higher pre-morbid body mass index (BMI) and the maintenance of BMI and nutritional state is associated with improved outcome. This review will focus on the associations between body composition and adiposity relative to disease duration and risk, and will discuss current evidence that supports the benefits of improving energy balance, and the maintenance of body mass through nutritional intervention in ALS.

Collaboration


Dive into the Shyuan T. Ngo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert D. Henderson

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Chen

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

W. D. Phillips

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge