Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siavash Atashgahi is active.

Publication


Featured researches published by Siavash Atashgahi.


Environmental Microbiology | 2017

Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol.

Siavash Atashgahi; Yue Lu; Ying Zheng; Edoardo Saccenti; Maria Suarez-Diez; Javier Ramiro-Garcia; Heinrich Eisenmann; Martin Elsner; Alfons Johannes Maria Stams; Dirk Springael; Winnie Dejonghe; Hauke Smidt

Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and geochemical and microbial shifts were followed for 265 days. Consistent with anoxic conditions and sulfate reduction after biostimulation, MiSeq 16S rRNA gene sequencing revealed temporarily increased relative abundance of Firmicutes, Bacteriodetes and sulfate reducing Deltaproteobacteria. In line with 13 C cDCE enrichment and increased Dehalococcoides mccartyi (Dcm) numbers, dechlorination was observed toward the end of the field experiment, albeit being incomplete with accumulation of vinyl chloride. This was concurrent with (i) decreased concentrations of dissolved organic carbon (DOC), reduced relative abundances of fermenting and sulfate reducing bacteria that have been suggested to promote Dcm growth by providing electron donor (H2 ) and essential corrinoid cofactors, (ii) increased sulfate concentration and increased relative abundance of Epsilonproteobacteria and Deferribacteres as putative oxidizers of reduced sulfur compounds. Strong correlations of DOC, relative abundance of fermenters and sulfate reducers, and dechlorination imply the importance of syntrophic interactions to sustain robust dechlorination. Tracking microbial and environmental parameters that promote/preclude enhanced reductive dechlorination should aid development of sustainable bioremediation strategies.


FEMS Microbiology Ecology | 2013

Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones

Siavash Atashgahi; Farai Maphosa; Eylem Doğan; Hauke Smidt; Dirk Springael; Winnie Dejonghe

Surficial riverbed sediments are often characterized by sharp redox gradients between the aerobic benthic sediment and underlying anoxic sediment, potentially representing an ideal niche for aerobic and anaerobic vinyl chloride (VC) degraders. To test this, the fate of VC in aerobic and anaerobic microcosms containing surficial sediment of a riverbed hyporheic zone receiving VC-contaminated groundwater was explored. Quantitative PCR showed that Dehalococcoides 16S rRNA gene and VC reductive dehalogenase-encoding genes (vcrA, bvcA) were highly enriched in anaerobic microcosms, with stoichiometric conversion of VC to ethene. In aerobic microcosms, etnC and etnE involved in aerobic ethene/VC oxidation were enriched with concomitant low or no accumulation of ethene. However, Dehalococcoides 16S rRNA gene, vcrA and bvcA copy numbers were also enriched in oxygen-exposed microcosms containing sediment with high organic carbon and small grain size, whereas they were reduced in oxygen-exposed sediment with low organic carbon and larger grain size in line with extensive oxygen penetration into the sediment. These results suggest the coexistence and coactivity of anaerobic and aerobic VC degraders in the same small volume of surficial sediment and that oxygen distribution, as determined by sediment grain size and organic matter content, affects the local VC-degrading bacterial community and VC biodegradation pathway.


Organohalide-Respiring Bacteria | 2016

Overview of Known Organohalide-Respiring Bacteria—Phylogenetic Diversity and Environmental Distribution

Siavash Atashgahi; Yue Lu; Hauke Smidt

To date, organohalide respiration (OHR) has been restricted to the bacterial domain of life. Known organohalide-respiring bacteria (OHRB) are spread among several phyla comprising both Gram-positive and Gram-negative bacteria. As a unique trait, OHRB benefit from reductive dehalogenase enzymes enabling them to use different organohalides as terminal electron acceptors and occupy a wide range of terrestrial and aquatic environments. This chapter comprises three sections: First, we give an overview of phylogeny of known OHRB and briefly discuss physiological and genetic characteristics of each group. Second, the environmental distribution of OHRB is presented. Owing to the application of molecular diagnostic approaches, OHRB are being increasingly detected not only from organohalide-contaminated groundwaters and sediments but also from pristine environments, including deep oceanic sediments and soils that are ample sources of naturally occurring organohalides. Finally, we highlight important factors that impact the ecology of OHRB and their interaction with other microbial guilds.


Scientific Reports | 2015

Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river

Siavash Atashgahi; Rozelin Aydin; Mauricio R. Dimitrov; Detmer Sipkema; Kelly Hamonts; Leo Lahti; Farai Maphosa; Thomas Kruse; Edoardo Saccenti; Dirk Springael; Winnie Dejonghe; Hauke Smidt

The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1–3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.


Microbiology | 2017

Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes

Mohammad Ali Amoozegar; Maryam Siroosi; Siavash Atashgahi; Hauke Smidt; Antonio Ventosa

Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.


Journal of Contaminant Hydrology | 2014

Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources

Uwe Schneidewind; Pieter Jan Haest; Siavash Atashgahi; Farai Maphosa; Kelly Hamonts; Miranda Maesen; Montse Calderer; Piet Seuntjens; Hauke Smidt; Dirk Springael; Winnie Dejonghe

Stimulated anaerobic dechlorination is generally considered a valuable step for the remediation of aquifers polluted with chlorinated ethenes (CEs). Correct simulation and prediction of this process in situ, however, require good knowledge of the associated biological reactions. The aim of this study was to evaluate the dechlorination reaction in an aquifer contaminated with trichloroethene (TCE) and its daughter products, discharging into the Zenne River. Different carbon sources were used in batch cultures and these were related to the dechlorination reaction, together with the monitored biomarkers. Appropriate kinetic formulations were assessed. Reductive dechlorination of TCE took place only when external carbon sources were added to microcosms, and occurred concomitant with a pronounced increase in the Dehalococcoides mccartyi cell count as determined by 16S rRNA gene-targeted qPCR. This indicates that native dechlorinating bacteria are present in the aquifer of the Zenne site and that the oligotrophic nature of the aquifer prevents a complete degradation to ethene. The type of carbon source, the cell number of D. mccartyi or the reductive dehalogenase genes, however, did not unequivocally explain the observed differences in degradation rates or the extent of dechlorination. Neither first-order, Michaelis-Menten nor Monod kinetics could perfectly simulate the dechlorination reactions in TCE spiked microcosms. A sensitivity analysis indicated that the inclusion of donor limitation would not significantly enhance the simulations without a clear process understanding. Results point to the role of the supporting microbial community but it remains to be verified how the complexity of the microbial (inter)actions should be represented in a model framework.


PLOS ONE | 2015

Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation

Nora B. Sutton; Siavash Atashgahi; Edoardo Saccenti; Tim Grotenhuis; Hauke Smidt; Huub Rijnaarts

While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.


Ground Water | 2015

Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents

Nora B. Sutton; Siavash Atashgahi; Jurgen van der Wal; Geert Wijn; Tim Grotenhuis; Hauke Smidt; Huub Rijnaarts

In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR) to monitor the abundance of OHRB (Dehalococcoides mccartyi, Dehalobacter, Geobacter, and Desulfitobacterium) and reductive dehalogenase genes (rdh; tceA, vcrA, and bvcA) at a field location contaminated with chlorinated solvents prior to and following treatment with sodium persulfate. Natural attenuation of the contaminants tetrachloroethene (PCE) and trichloroethene (TCE) observed prior to ISCO was confirmed by the distribution of OHRB and rdh genes. In wells impacted by persulfate treatment, a 1 to 3 order of magnitude reduction in the abundances of OHRB and complete absence of rdh genes was observed 21 days after ISCO. Groundwater acidification (pH<3) and increase in the oxidation reduction potential (>500 mV) due to persulfate treatment were significant and contributed to disruption of the microbial community. In wells only mildly impacted by persulfate, a slight stimulation of the microbial community was observed, with more than 1 order of magnitude increase in the abundance of Geobacter and Desulfitobacterium 36 days after ISCO. After six months, regeneration of the OHRB community occurred, however, neither D. mccartyi nor any rdh genes were observed, indicating extended disruption of biological natural attenuation (NA) capacity following persulfate treatment. For full restoration of biological NA activity, additional time may prove sufficient; otherwise addition electron donor amendment or bioaugmentation may be required.


Environmental Science & Technology | 2017

Geochemical Parameters and Reductive Dechlorination Determine Aerobic Cometabolic vs Aerobic Metabolic Vinyl Chloride Biodegradation at Oxic/Anoxic Interface of Hyporheic Zones.

Siavash Atashgahi; Yue Lu; Javier Ramiro-Garcia; Peng Peng; Farai Maphosa; Detmer Sipkema; Winnie Dejonghe; Hauke Smidt; Dirk Springael

Hyporheic zones mediate vinyl chloride (VC) biodegradation in groundwater discharging into surface waters. At the oxic/anoxic interface (OAI) of hyporheic zones subjected to redox oscillations, VC is degraded via coexisting aerobic ethenotrophic and anaerobic reductive dechlorination pathways. However, the identity of aerobic VC degradation pathways (cometabolic vs metabolic) and their interactions with reductive dechlorination in relation to riverbed sediment geochemistry remain ill-defined. We addressed this using microcosms containing OAI sediments incubated under fluctuating oxic/anoxic atmosphere. Under oxic atmosphere, aerobic metabolic VC oxidation was absent in sediments with high total organic carbon (TOC) and VC was reductively dechlorinated to ethene. Ethene was oxidized by ethenotrophs that can degrade VC cometabolically. Contrastingly, VC was metabolically oxidized by ethenotrophs in low-TOC sediments with low reductive dechlorination potential. Accordingly, enrichment and isolation of metabolic VC-oxidizing ethenotrophs was successful only from the low-TOC sediment. Sequence analysis of etnE genes from the microcosms as well phylogenetic typing of the isolates showed that ethenotrophs in the sediments were facultative anaerobic Proteobacteria capable of coping with OAI-associated redox fluctuations. Our results suggest that local sediment heterogeneity supports/selects divergent VC degradation processes at the OAI and that high reductive dechlorination potential suppresses development of aerobic metabolic VC oxidation potential.


Water Research | 2018

Natural attenuation of chlorinated ethenes in hyporheic zones:: A review of key biogeochemical processes and in-situ transformation potential

John Weatherill; Siavash Atashgahi; Uwe Schneidewind; Stefan Krause; Sami Ullah; Nigel J. Cassidy; Michael O. Rivett

Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban water ecosystems. The aquifer-river interface (known as the hyporheic zone) is a critical pathway for CE discharge to surface water bodies in groundwater baseflow. This pore water system may represent a natural bioreactor where anoxic and oxic biotransformation process act in synergy to reduce or even eliminate contaminant fluxes to surface water. Here, we critically review current process understanding of anaerobic CE respiration in the competitive framework of hyporheic zone biogeochemical cycling fuelled by in-situ fermentation of natural organic matter. We conceptualise anoxic-oxic interface development for metabolic and co-metabolic mineralisation by a range of aerobic bacteria with a focus on vinyl chloride degradation pathways. The superimposition of microbial metabolic processes occurring in sediment biofilms and bulk solute transport delivering reactants produces a scale dependence in contaminant transformation rates. Process interpretation is often confounded by the natural geological heterogeneity typical of most riverbed environments. We discuss insights from recent field experience of CE plumes discharging to surface water and present a range of practical monitoring technologies which address this inherent complexity at different spatial scales. Future research must address key dynamics which link supply of limiting reactants, residence times and microbial ecophysiology to better understand the natural attenuation capacity of hyporheic systems.

Collaboration


Dive into the Siavash Atashgahi's collaboration.

Top Co-Authors

Avatar

Hauke Smidt

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Winnie Dejonghe

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Dirk Springael

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Farai Maphosa

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Yue Lu

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly Hamonts

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Pieter Jan Haest

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfons J. M. Stams

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge