Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sibaji Sarkar is active.

Publication


Featured researches published by Sibaji Sarkar.


Cancers | 2014

Drug Resistance in Cancer: An Overview

Genevieve Housman; Shannon Byler; Sarah Heerboth; Karolina Lapinska; Mckenna Longacre; Nicole Snyder; Sibaji Sarkar

Cancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial-mesenchymal transition, as well as how inherent tumor cell heterogeneity plays a role in drug resistance. It also describes the epigenetic modifications that can induce drug resistance and considers how such epigenetic factors may contribute to the development of cancer progenitor cells, which are not killed by conventional cancer therapies. Lastly, this review concludes with a discussion on the best treatment options for existing drug resistant cancers, ways to prevent the formation of drug resistant cancers and cancer progenitor cells, and future directions of study.


Clinical and translational medicine | 2015

EMT and tumor metastasis

Sarah Heerboth; Genevieve Housman; Meghan Leary; Mckenna Longacre; Shannon Byler; Karolina Lapinska; Amber Willbanks; Sibaji Sarkar

EMT and MET comprise the processes by which cells transit between epithelial and mesenchymal states, and they play integral roles in both normal development and cancer metastasis. This article reviews these processes and the molecular pathways that contribute to them. First, we compare embryogenesis and development with cancer metastasis. We then discuss the signaling pathways and the differential expression and down-regulation of receptors in both tumor cells and stromal cells, which play a role in EMT and metastasis. We further delve into the clinical implications of EMT and MET in several types of tumors, and lastly, we discuss the role of epigenetic events that regulate EMT/MET processes. We hypothesize that reversible epigenetic events regulate both EMT and MET, and thus, also regulate the development of different types of metastatic cancers.


Genetics & Epigenetics | 2014

Use of Epigenetic Drugs in Disease: An Overview

Sarah Heerboth; Karolina Lapinska; Nicole Snyder; Meghan Leary; Sarah Rollinson; Sibaji Sarkar

Epigenetic changes such as DNA methylation and histone methylation and acetylation alter gene expression at the level of transcription by upregulating, downregulating, or silencing genes completely. Dysregulation of epigenetic events can be pathological, leading to cardiovascular disease, neurological disorders, metabolic disorders, and cancer development. Therefore, identifying drugs that inhibit these epigenetic changes are of great clinical interest. In this review, we summarize the epigenetic events associated with different disorders and diseases including cardiovascular, neurological, and metabolic disorders, and cancer. Knowledge of the specific epigenetic changes associated with these types of diseases facilitates the development of specific inhibitors, which can be used as epigenetic drugs. In this review, we discuss the major classes of epigenetic drugs currently in use, such as DNA methylation inhibiting drugs, bromodomain inhibitors, histone acetyl transferase inhibitors, histone deacetylase inhibitors, protein methyltransferase inhibitors, and histone methylation inhibitors and their role in reversing epigenetic changes and treating disease.


International Journal of Molecular Sciences | 2013

Cancer Development, Progression, and Therapy: An Epigenetic Overview

Sibaji Sarkar; Garrick Horn; Kimberly Moulton; Anuja Oza; Shannon Byler; Shannon Kokolus; Mckenna Longacre

Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.


Epigenomics | 2013

Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy

Sibaji Sarkar; Sarah Goldgar; Shannon Byler; Shoshana Rosenthal; Sarah Heerboth

Epigenetic regulation in eukaryotic and mammalian systems is a complex and emerging field of study. While histone modifications create an open chromatin conformation allowing for gene transcription, CpG methylation adds a further dimension to the expression of specific genes in developmental pathways and carcinogenesis. In this review, we will highlight DNA methylation as one of the distinct mechanisms for gene silencing and try to provide insight into the role of epigenetics in cancer progenitor cell formation and carcinogenesis. We will also introduce the concept of a dynamic methylation-demethylation system and the potential for the existence of a demethylating enzyme in this process. Finally, we will explain how re-expression of epigenetically silenced tumor suppressor genes could be exploited to develop effective drug therapies. In particular, we will consider how a combination therapy that includes epigenetic drugs could possibly kill cancer progenitor cells and reduce the chance of relapse following chemotherapy.


Cancer Letters | 2014

MicroRNA Let-7 Downregulates STAT3 Phosphorylation in Pancreatic Cancer Cells by Increasing SOCS3 Expression

Kripa Patel; Anita Kollory; Asami Takashima; Sibaji Sarkar; Douglas V. Faller; Sajal K. Ghosh

Although dispensable for normal pancreatic function, STAT3 signaling is frequently activated in pancreatic cancers. Consistent downregulation of expression of microRNA let-7 is also characteristic of pancreatic ductal adenocarcinoma (PDAC) biopsy specimens. We demonstrate in this study that re-expression of let-7 in poorly-differentiated PDAC cell lines reduced phosphorylation/activation of STAT3 and its downstream signaling events and reduced the growth and migration of PDAC cells. Let-7 re-expression did not repress expression of STAT3 protein or its activator cytokine interleukin 6 (IL-6). However, let-7 re-expression enhanced cytoplasmic expression of suppressor of cytokine signaling 3 (SOCS3), which blocks STAT3 activation by JAK2. Our study thus identified a mechanism by which STAT3 signaling can be inhibited in pancreatic cancer cells by modifying let-7 expression.


Oligonucleotides | 2011

T-oligos inhibit growth and induce apoptosis in human ovarian cancer cells.

Sibaji Sarkar; Douglas V. Faller

Ovarian cancer remains a leading cause of death among women worldwide, and current treatment regimens for advanced disease are inadequate. Oligonucleotides with sequence homology to telomeres (called T-oligos) have been shown to mimic DNA damage responses in cells and induce cytotoxic effects in certain tumor cell lines. We studied the effects of 2 distinct 16 mer T-oligos in 4 human ovarian epithelial carcinoma cell lines. A T-oligo with perfect homology to the telomere overhang region demonstrated some cytotoxic activity in half of the cell lines. A G-rich T-oligo derivative showed more potency and broader cytotoxic activity in these lines than the parental T-oligo. Activation of apoptotic pathways in ovarian cancer cells by exposure to the T-oligo was demonstrated by multiple independent assays. T-oligo was shown to have additive, or more than additive, activity in combination with 2 different histone deacetylase drugs currently in clinical testing. T-oligos may therefore provide a new and tumor-targeted approach to ovarian cancers.


Cancer Prevention Research | 2010

A VITAMIN D RECEPTOR-ALKYLATING DERIVATIVE OF 1α, 25-DIHYDROXYVITAMIN D3 INHIBITS GROWTH OF HUMAN KIDNEY CANCER CELLS AND SUPPRESSES TUMOR-GROWTH

James R. Lambert; Vikram J. Eddy; Christian D. Young; Kelly S. Persons; Sibaji Sarkar; Julie A. Kelly; Elizabeth Genova; M. Scott Lucia; Douglas V. Faller; Rahul Ray

1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] has shown strong promise as an antiproliferative agent in several malignancies, yet its therapeutic use has been limited by its toxicity leading to search for analogues with antitumor property and low toxicity. In this study, we evaluated the in vitro and in vivo properties of 1,25-dihydroxyvitamin D3-3-bromoacetate [1,25(OH)2D3-3-BE], an alkylating derivative of 1,25(OH)2D3, as a potential therapeutic agent for renal cancer. Dose response of 1,25(OH)2D3-3-BE in 2 kidney cancer cell lines was evaluated for its antiproliferative and apoptotic properties, and mechanisms were evaluated by Western blot and FACS analyses. Therapeutic potential of 1,25(OH)2D3-3-BE was assessed both by determining its stability in human serum and by evaluating its efficacy in a mouse xenograft model of human renal tumor. We observed that 1,25(OH)2D3-3-BE is significantly more potent than an equivalent concentration of 1,25(OH)2D3 in inhibiting growth of A498 and Caki 1 human kidney cancer cells. 1,25(OH)2D3-3-BE–mediated growth inhibition was promoted through inhibition of cell-cycle progression by downregulating cyclin A and induction of apoptosis by stimulating caspase activity. Moreover, 1,25(OH)2D3-3-BE strongly inhibited Akt phosphorylation and phosphorylation of its downstream target, caspase-9. 1,25(OH)2D3-3-BE seemed to be stable in human serum. In xenograft mouse model of human renal tumor, 1,25(OH)2D3-3-BE was more potent at reducing tumor size than 1,25(OH)2D3, which was accompanied by an increase in apopotosis and reduction of cyclin A staining in the tumors. These results suggest a translational potential of this compound as a therapeutic agent in renal cell carcinoma. Data from this study and extensive studies of vitamin D for the prevention of many malignancies support the potential of 1,25(OH)2D3-3-BE for preventing renal cancer and the development of relevant in vivo prevention models for assessing this potential, which do not exist at present. Cancer Prev Res; 3(12); 1596–607. ©2010 AACR.


International Journal of Molecular Sciences | 2016

A Comparative Analysis of Genetic and Epigenetic Events of Breast and Ovarian Cancer Related to Tumorigenesis

Mckenna Longacre; Nicole Snyder; Genevieve Housman; Meghan Leary; Karolina Lapinska; Sarah Heerboth; Amber Willbanks; Sibaji Sarkar

Breast cancer persists as the most common cause of cancer death in women worldwide. Ovarian cancer is also a significant source of morbidity and mortality, as the fifth leading cause of cancer death among women. This reflects the continued need for further understanding and innovation in cancer treatment. Though breast and ovarian cancer usually present as distinct clinical entities, the recent explosion of large-scale -omics research has uncovered many overlaps, particularly with respect to genetic and epigenetic alterations. We compared genetic, microenvironmental, stromal, and epigenetic changes common between breast and ovarian cancer cells, as well as the clinical relevance of these changes. Some of the most striking commonalities include genetic alterations of BRCA1 and 2, TP53, RB1, NF1, FAT3, MYC, PTEN, and PIK3CA; down regulation of miRNAs 9, 100, 125a, 125b, and 214; and epigenetic alterations such as H3K27me3, H3K9me2, H3K9me3, H4K20me3, and H3K4me. These parallels suggest shared features of pathogenesis. Furthermore, preliminary evidence suggests a shared epigenetic mechanism of oncogenesis. These similarities, warrant further investigation in order to ultimately inform development of more effective chemotherapeutics, as well as strategies to circumvent drug resistance.


Genetics & Epigenetics | 2016

The Evolution of Epigenetics: From Prokaryotes to Humans and Its Biological Consequences

Amber Willbanks; Meghan Leary; Molly Greenshields; Camila Tyminski; Sarah Heerboth; Karolina Lapinska; Kathryn Haskins; Sibaji Sarkar

The evolution process includes genetic alterations that started with prokaryotes and now continues in humans. A distinct difference between prokaryotic chromosomes and eukaryotic chromosomes involves histones. As evolution progressed, genetic alterations accumulated and a mechanism for gene selection developed. It was as if nature was experimenting to optimally utilize the gene pool without changing individual gene sequences. This mechanism is called epigenetics, as it is above the genome. Curiously, the mechanism of epigenetic regulation in prokaryotes is strikingly different from that in eukaryotes, mainly higher eukaryotes, like mammals. In fact, epigenetics plays a significant role in the conserved process of embryogenesis and human development. Malfunction of epigenetic regulation results in many types of undesirable effects, including cardiovascular disease, metabolic disorders, autoimmune diseases, and cancer. This review provides a comparative analysis and new insights into these aspects.

Collaboration


Dive into the Sibaji Sarkar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas V. Faller

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Douglas V. Faller

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Jane E. Freedman

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge