Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sibani Lisa Biswal is active.

Publication


Featured researches published by Sibani Lisa Biswal.


Scientific Reports | 2012

Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries

Madhuri Thakur; Steven L. Sinsabaugh; Mark Isaacson; Michael S. Wong; Sibani Lisa Biswal

One of the most exciting areas in lithium ion batteries is engineering structured silicon anodes. These new materials promise to lead the next generation of batteries with significantly higher reversible charge capacity than current technologies. One drawback of these materials is that their production involves costly processing steps, limiting their application in commercial lithium ion batteries. In this report we present an inexpensive method for synthesizing macroporous silicon particulates (MPSPs). After being mixed with polyacrylonitrile (PAN) and pyrolyzed, MPSPs can alloy with lithium, resulting in capacities of 1000 mAhg−1 for over 600+ cycles. These sponge-like MPSPs with pyrolyzed PAN (PPAN) can accommodate the large volume expansion associated with silicon lithiation. This performance combined with low cost processing yields a competitive anode material that will have an immediate and direct application in lithium ion batteries.


Soft Matter | 2012

Visualization of improved sweep with foam in heterogeneous porous media using microfluidics

Kun Ma; Rachel Liontas; Charles A. Conn; George J. Hirasaki; Sibani Lisa Biswal

We demonstrate the use of foam to divert flow from high permeable to low permeable regions in a PDMS heterogeneous porous microfluidic system. Foam is generated using a flow-focusing microfluidic device with co-flowing gas and aqueous surfactant streams. Foam quality (gas fraction) is modulated by adjusting the flow rate of the aqueous surfactant solution while keeping the gas inlet pressure fixed. The foam is then injected into an aqueous-solution filled heterogeneous porous media containing a high and low permeable region and sweep of the saturated aqueous phase is monitored. Compared with 100% gas injection, surfactant-stabilized foam is shown to effectively improve the sweep of the aqueous fluid in both high and low permeable regions of the porous micromodel. The best performance of foam on fluid diversion is observed in the lamella-separated foam regime, where the presence of foam can enhance gas saturation in the low permeable region up to 45.1% at the time of gas breakthrough. The presented results are useful in understanding and designing foam injection in porous underground formations for aquifer remediation and enhanced oil recovery processes.


Journal of Colloid and Interface Science | 2013

Adsorption of cationic and anionic surfactants on natural and synthetic carbonate materials.

Kun Ma; Leyu Cui; Yezi Dong; Tianlong Wang; Chang Da; George J. Hirasaki; Sibani Lisa Biswal

Adsorption of cationic and anionic surfactants on carbonate materials is investigated in this study. Cetylpyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) are chosen as typical cationic and anionic surfactants, respectively. It is found that the cationic CPC exhibits negligible adsorption on synthetic calcite in deionized water compared with the adsorption of the anionic SDS. However, a substantial amount of adsorption of CPC is observed on natural carbonates, such as dolomite and limestone. X-ray photoelectron spectroscopy (XPS) reveals that that a substantial amount of silicon and aluminum exists in natural dolomite and limestone but not in synthetic calcite. The adsorption plateau of CPC on carbonates highly depends on the silicon composition in the carbonate samples due to the strong electrostatic interaction between CPC and negative binding sites in silica and/or clay. The adsorption of CPC on natural carbonates is reduced in the presence of 1atm CO2 compared with the case under 1atm air, while SDS precipitates out of the solution under 1atm CO2 due to its intolerance to divalent ions released from the carbonate surface as a result of CO2 acidification.


Spe Journal | 2014

Switchable Nonionic to Cationic Ethoxylated Amine Surfactants for CO2 Enhanced Oil Recovery in High-Temperature, High-Salinity Carbonate Reservoirs

Yunshen Chen; Amro S. Elhag; Benjamin M. Poon; Leyu Cui; Kun Ma; Sonia Y. Liao; Prathima P. Reddy; Andrew J. Worthen; George J. Hirasaki; Quoc P. Nguyen; Sibani Lisa Biswal; Keith P. Johnston

Yunshen Chen, SPE, Amro S. Elhag, and Benjamin M. Poon, Department of Chemical Engineering, University of Texas at Austin; Leyu Cui, and Kun Ma, Department of Chemical and Biomolecular Engineering, Rice University; Sonia Y. Liao, Prathima P. Reddy and Andrew J. Worthen, SPE, Department of Chemical Engineering, University of Texas at Austin; George J. Hirasaki, SPE, Department of Chemical and Biomolecular Engineering, Rice University; Quoc P. Nguyen, SPE, Department of Petroleum and Geosystems Engineering, University of Texas at Austin; Sibani L. Biswal, Department of Chemical and Biomolecular Engineering, Rice University; and Keith P. Johnston, Department of Chemical Engineering, University of Texas at Austin


Analytical Chemistry | 2014

Rapid Detection of Pathogenic Bacteria and Screening of Phage-Derived Peptides Using Microcantilevers

Jinghui Wang; M. Josephine Morton; Christopher T. Elliott; Nitsara Karoonuthaisiri; Laura Segatori; Sibani Lisa Biswal

We report the use of an array of microcantilevers to measure the specific binding of Salmonella to peptides derived from phage display libraries. Selectivity of these phage-derived peptides for Salmonella spp. and other pathogens ( Listeria monocytogenes and Escherichia coli ) are compared with a commercially available anti- Salmonella antibody and the antimicrobial peptide alamethicin. A Langmuir isotherm model was applied to determine the binding affinity constants of the peptides to the pathogens. One particular peptide, MSal 020417, demonstrated a higher binding affinity to Salmonella spp. than the commercially available antibody and is able to distinguish among eight Salmonella serovars on a microcantilever. A multiplexed screening system to quickly determine the binding affinities of various peptides to a particular pathogen highly improves the efficiency of the peptide screening process. Combined with phage-derived peptides, this microcantilever-based technique provides a novel biosensor to rapidly and accurately detect pathogens and holds potential to be further developed as a screening method to identify pathogen-specific recognition elements.


Langmuir | 2014

Directing Assembly of DNA-Coated Colloids with Magnetic Fields To Generate Rigid, Semiflexible, and Flexible Chains

Julie Byrom; Patric Han; Michael Savory; Sibani Lisa Biswal

We report the formation of colloidal macromolecules consisting of chains of micron-sized paramagnetic particles assembled using a magnetic field and linked with DNA. The interparticle spacing and chain flexibility were controlled by varying the magnetic field strength and the linker spring constant. Variations in the DNA lengths allowed for the generation of chains with an improved range of flexibility as compared to previous studies. These chains adopted the rigid-rod, semiflexible, and flexible conformations that are characteristic of linear polymer systems. These assembly techniques were investigated to determine the effects of the nanoscale DNA linker properties on the properties of the microscale colloidal chains. With stiff DNA linkers (564 base pairs) the chains were only stable at moderate to high field strengths and produced rigid chains. For flexible DNA linkers (8000 base pairs), high magnetic field strengths caused the linkers to be excluded from the gap between the particles, leading to a transition from very flexible chains at low field strengths to semiflexible chains at high field strengths. In the intermediate range of linker sizes, the chains exhibited predictable behavior, demonstrating increased flexibility with longer DNA linker length or smaller linking field strengths. This study provides insight into the process of directed assembly using magnetic fields and DNA by precisely tuning the components to generate colloidal analogues of linear macromolecular chains.


Langmuir | 2009

Probing the stability of magnetically assembled DNA-linked colloidal chains.

Dichuan Li; Jasmine Rogers; Sibani Lisa Biswal

The self-assembly of colloidal particles using DNA linker molecules has led to novel colloidal materials. This article describes the development and characterization of a new class of colloidal structures based on the directed assembly of DNA-linked paramagnetic particles. A key obstacle to assembling these structures is understanding the fundamental chemistry and physics of the assembly processes. The stability of these cross-linked chain structures is the first step toward reliable assembly and thus important for its applications; however, chain stability has yet to be systematically studied. In this paper, we investigate both theoretically and experimentally, the stability of DNA-linked paramagnetic colloidal chains as a function of externally applied magnetic field strength and surface grafted DNA length and density. A total interparticle free energy potential model is developed accounting for all major forces contributing to chain stability, and a phase diagram is obtained from experiments to illustrate linked chain phases, unstable unlinked particle phases, and their transitions, which agree well with those predicted by the model. From this study, optimized parameters for successful linking and building stable linked chains are obtained.


Soft Matter | 2010

Bending dynamics of DNA-linked colloidal particle chains

Dichuan Li; Sam Banon; Sibani Lisa Biswal

Colloidal particles and assemblies have proven to be useful models for analogous atomic and molecular systems. In this article, we present a colloidal worm-like chain (WLC) model using DNA-linked colloidal particle chains as an analogue to semiflexible linear polymers. The bending rigidity, or persistence length, of these chains can be determined by monitoring the thermal fluctuations of the chains. We show that the persistence lengths of the chains can be tuned from 1 to 50 mm which corresponds to a length-to-persistence length ratio of 0.002 to 0.1, by changing the length of the DNA used to link adjacent particles from 75 to 15 bases, respectively. We also studied the bending relaxation dynamics of these chains, which match well with theoretical predictions, further supporting the validity of using these colloidal chains as models for semiflexible polymer systems in both equilibrium and dynamic studies.


Soft Matter | 2013

Neighbor-induced bubble pinch-off: novel mechanisms of in situ foam generation in microfluidic channels

Rachel Liontas; Kun Ma; George J. Hirasaki; Sibani Lisa Biswal

We utilize a microfluidic constriction to demonstrate two new mechanisms of in situ foam generation in porous media. The initial foam was generated using a flow-focusing geometry with co-flowing gas and surfactant solution streams and then flowed through a microfluidic constriction. By varying the gas and surfactant solution flow rates, different types of monodisperse foams were generated in which two bubbles (2-bubble foam), three bubbles (3-bubble foam), or more than three bubbles (>3-bubble foam) spanned the channel width. It was expected that the bubbles would snap off upon passing through the constriction; however, in our system, the snap-off mechanism was observed only under unstable conditions, namely, when the foam was wet and had a large bubble size. Instead, the following behaviors were observed as stable foam passed through the constriction: no change, reorientation, and pinch-off, which included two newly observed mechanisms (neighbor–wall pinch-off and neighbor–neighbor pinch-off). Neighbor–wall pinch-off occurs as a bubble is pinched between the surfaces of a neighboring bubble and the curved wall of the constriction. Neighbor–neighbor pinch-off occurs as a bubble is pinched off between two adjacent neighboring bubbles. The width of the pinched bubble as a function of time before pinch-off was found to scale as a power law with exponents of 0.523 ± 0.06 and 1.004 ± 0.05 for neighbor–wall and neighbor–neighbor pinch-off, respectively.


Langmuir | 2016

Role of Gas Type on Foam Transport in Porous Media

Yongchao Zeng; Rouhi Farajzadeh; Ali Akbar Eftekhari; S. Vincent-Bonnieu; Aarthi Muthuswamy; W.R. Rossen; George J. Hirasaki; Sibani Lisa Biswal

We present the results of an experimental investigation of the effect of gas type and composition on foam transport in porous media. Steady-state foam strengths with respect to three cases of distinct gases and two cases containing binary mixtures of these gases were compared. The effects of gas solubility, the stability of lamellae, and the gas diffusion rate across the lamellae were examined. Our experimental results showed that the steady-state foam strength is inversely correlated with the gas permeability across a liquid lamella, a parameter that characterizes the rate of mass transport. The results are also in good agreement with existing observations that the foam strength for a mixture of gases is correlated with the less soluble component. Three hypotheses with different predictions of the underlying mechanism that explain the role of gas type and composition in foam strength are discussed in detail.

Collaboration


Dive into the Sibani Lisa Biswal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith P. Johnston

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amro S. Elhag

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge