Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sibani Sarkar is active.

Publication


Featured researches published by Sibani Sarkar.


Life Sciences | 2009

Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats.

Aparajita Ghosh; Ardhendu K. Mandal; Sibani Sarkar; Subhamay Panda; Nirmalendu Das

AIMS This study was performed to evaluate the therapeutic efficacy of nanocapsulated flavonoidal quercetin (QC) in combating arsenic-induced reactive oxygen species (ROS)-mediated oxidative damage in hepatocytes and brain cells in a rat model. MAIN METHODS Hepatic and neuronal cell damage in rats was made by a single injection (sc) of sodium arsenite (NaAsO(2), 13 mg/kg b. wt. in 0.5 ml of physiological saline). A single dose of 500 microl of quercetin suspension (QC) (QC 8.98 micromol/kg) or 500 microl of nanocapsulated QC (NPQC) (QC 8.98 micromol/kg) was given orally to rats at 90 min prior to the arsenite injection. KEY FINDINGS Inorganic arsenic depositions (182+/-15.6 and 110+/-12.8 ng/g protein) were found in hepatic and neuronal mitochondrial membranes. Antioxidant levels in hepatic and neuronal cells were reduced significantly by arsenic. NPQC prevented the arsenite-induced reduction in antioxidant levels in the liver and brain. Arsenic induced a substantial decrease in liver and brain cell membrane microviscosities, and NPQC treatment resulted in a unique protection against the loss. A significant correlation between mitochondrial arsenic and its conjugated diene level was observed both in liver and brain cells for all experimental rats. SIGNIFICANCE Arsenic-specific antidotes are used against arsenic-induced toxicity. However, the target site is poorly recognized and therefore achieving an active concentration of drug molecules can be a challenge. Thus, our objective was to formulate NPQC and to investigate its therapeutic potential in an oral route against arsenite-induced hepatic and neuronal cell damage in a rat model.


Chemico-Biological Interactions | 2012

Nanocapsulated curcumin: Oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat

Debasree Ghosh; Somsubhra Thakur Choudhury; Swarupa Ghosh; Ardhendu K. Mandal; Sibani Sarkar; Aparajita Ghosh; Krishna Das Saha; Nirmalendu Das

Toxic outcome of chemical therapeutics as well as multidrug resistance are two serious phenomena for their inacceptance in cancer chemotherapy. Antioxidants like curcumin (Cur) have gained immense importance for their excellent anticarcinogenic activities and minimum toxic manifestations in biological system. However, Cur is lipophilic and thus following oral administration hardly appears in blood indicating its potential therapeutic challenge in cancer therapy. Nanocapsulated Cur has been used as a drug delivery vector to focus the effectiveness of these vesicles against hepatocellular carcinoma. The theme of work was to evaluate effectiveness in oral route of polylactide co-glycolide (PLGA) Nanocapsulated curcumin (Nano Cur) against diethylnitrosamine (DEN) induced hepatocellular carcinoma (HCC) in rat. Nano Cur of average diameter 14nm and encapsulation efficiency of 78% were prepared. Fourier Transform Infra Red (FTIR) analysis revealed that there is no chemical interaction between drug and the polymer. Three i.p. injections of the chemical hepatocarcinogen DEN at 15days interval causes hepatotoxicity, the generation of reactive oxygen species (ROS), lipid peroxidation, decrease in plasma membrane microviscosity and depletion of antioxidant enzyme levels in liver. Nano Cur (weekly oral treatment for 16weeks at 20mg/kg b.wt) in DEN induced HCC rats exerted significant protection against HCC and restored redox homeostasis in liver cells. Nanocapsulated Cur caused cancer cell apoptosis as visualized by ApoBrdU analysis. Histopathological analysis confirmed the pathological improvement in the liver. Nano Cur was found to be a potential formulation in oral route in combating the oxidative damage of hepatic cells and eliminating DEN induced hepatocellular cancer cells in rat whereas identical amount of free Cur treatment was found almost ineffective.


PLOS ONE | 2013

Neuroprotective Role of Nanoencapsulated Quercetin in Combating Ischemia-Reperfusion Induced Neuronal Damage in Young and Aged Rats

Aparajita Ghosh; Sibani Sarkar; Ardhendu K. Mandal; Nirmalendu Das

Cerebral stroke is the leading cause of death and permanent disability among elderly people. In both humans and animals, cerebral ischemia damages the nerve cells in vulnerable regions of the brain, viz., hippocampus, cerebral cortex, cerebellum, and hypothalamus. The present study was conducted to evaluate the therapeutic efficacy of nanoencapsulated quercetin (QC) in combating ischemia-reperfusion-induced neuronal damage in young and aged Swiss Albino rats. Cerebral ischemia was induced by occlusion of the common carotid arteries of both young and aged rats followed by reperfusion. Nanoencapsulated quercetin (2.7 mg/kg b wt) was administered to both groups of animals via oral gavage two hours prior to ischemic insults as well as post-operation till day 3. Cerebral ischemia and 30 min consecutive reperfusion caused a substantial increase in lipid peroxidation, decreased antioxidant enzyme activities and tissue osmolality in different brain regions of both groups of animals. It also decreased mitochondrial membrane microviscosity and increased reactive oxygen species (ROS) generation in different brain regions of young and aged rats. Among the brain regions studied, the hippocampus appeared to be the worst affected region showing increased upregulation of iNOS and caspase-3 activity with decreased neuronal count in the CA1 and CA3 subfields of both young and aged rats. Furthermore, three days of continuous reperfusion after ischemia caused massive damage to neuronal cells. However, it was observed that oral treatment of nanoencapsulated quercetin (2.7 mg/kg b wt) resulted in downregulation of iNOS and caspase-3 activities and improved neuronal count in the hippocampal subfields even 3 days after reperfusion. Moreover, the nanoformulation imparted a significant level of protection in the antioxidant status in different brain regions, thus contributing to a better understanding of the given pathophysiological processes causing ischemic neuronal damage.


Current Aging Science | 2008

Nanoparticulated Quercetin in Combating Age Related Cerebral Oxidative Injury

Sanchari Das; Ardhendu K. Mandal; Aparajita Ghosh; Subhamay Panda; Nirmalendu Das; Sibani Sarkar

Reactive oxygen species e.g. O(2)(*-), H(2)O(2) and *OH generated by the induction of oxidative stress exert a potential threat on the activity of endogenous antioxidant enzymes and substantially influence the aging process and age-dependant neuropathology. Chemical antioxidant is almost ineffective in protecting neuronal cells from oxidative damage as Blood Brain Barrier exists in between blood and brain interstitial fluid that restricts undegradable influx from the circulation into cerebral region. Quercetin (QC), a flavonoidal antioxidant is known as a potent antioxidant for its polyphenolic configuration. Formulation of QC in polylactide nanocapsule has been done and the efficacy of this vesicular flavonoid has been tested against cerebral ischemia induced oxidative damage in young and old rat brains. Antioxidant potential of QC loaded in nanocapsule (QC 7.2 mmol/kg b.wt., size 50 nm) was investigated by an in vivo model of cerebral ischemia and reperfusion on Sprague Dawley young (2 months, b.wt. 160-180 g) and aged (20 months, b.wt. 415-440 g) rats. Diene level, the index of lipid peroxidation and GSSG/GSH ratio were found to be higher in normal aged, compared to normal young rat brain. Endogenous antioxidants activities were lower in aged rat brain compared to young. Further reduction of these antioxidants were observed in aged rat brain by the induction of cerebral ischemia - reperfusion. Nanocapsule encapsulated QC treatment resulted a significant protection to endogenous antioxidant enzymes against ischemia induced oxidative damage in neuronal cells of young and old rats.


Mechanisms of Ageing and Development | 2006

Mannosylated liposomal flavonoid in combating age-related ischemia-reperfusion induced oxidative damage in rat brain

Sibani Sarkar; Nirmalendu Das

Active oxygen species alter the activities of the enzymes involved in the defence against free radicals and substantially influence the aging process and age-dependent neuropathology. Unilamellar liposomes were used to deliver flavonoidal antioxidant quercetin (QC) to rat brain. Antioxidant potential of QC loaded in mannosylated (QC 7.2 micromol/kg b.wt.) liposomes (50 nm) was investigated by an in vivo model of cerebral ischemia and reperfusion on Sprague Dawley young (2 months old, b.wt. 160-180 g) and aged (20 months old, b.wt. 415-440 g) rats. Animals were made ischemic for 30 min by bilateral clamping of the common carotid artery followed by a 30 min cerebral reperfusion by withdrawing the clamping. Diene level and (GSSG/GSH) ratio were found to be higher in normal aged, compared to normal young rat brain. Superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione S-transferase activities were lower in normal aged rat brain. Further reduction of these antioxidant enzymes was observed in aged rat brain by the induction of cerebral ischemia and reperfusion. Mannosylated liposomally encapsulated QC treatment resulted in a significant preservation of the activities of antioxidant enzymes and a marked inhibition of cellular edema formation in neuronal cells of young and old rats.


Chemico-Biological Interactions | 2010

Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model.

Debasree Ghosh; Swarupa Ghosh; Sibani Sarkar; Aparajita Ghosh; Nirmalendu Das; Krishna Das Saha; Ardhendu K. Mandal

Arsenic, the environmental toxicant causes oxidative damage to liver and produces hepatic fibrosis. The theme of our study was to evaluate the therapeutic efficacy of liposomal and nanocapsulated herbal polyphenolic antioxidant quercetin (QC) in combating arsenic induced hepatic oxidative stress, fibrosis associated upregulation of its gene expression and plasma TGF beta (transforming growth factor beta) in rat model. A single dose of arsenic (sodium arsenite-NaAsO(2), 13 mg/kgb.wt) in oral route causes the generation of reactive oxygen species (ROS), arsenic accumulation in liver, hepatotoxicity and decrease in hepatic plasma membrane microviscosity and antioxidant enzyme levels in liver. Arsenic causes fibrosis associated elevation of its gene expression in liver, plasma TGF ss (from normal value 75.2+/-8.67 ng/ml to 196.2+/-12.07 ng/ml) and release of cytochrome c in cytoplasm. Among the two vesicular delivery systems formulated with QC, polylactide nanocapsules showed a promising result compared to liposomal delivery system in controlling arsenic induced alteration of those parameters. A single dose of 0.5 ml of nanocapsulated QC suspension (QC 2.71 mg/kg b.wt) when injected to rats 1h after arsenic administration orally protects liver from arsenic induced deterioration of antioxidant levels as well as oxidative stress associated gene expression of liver. Histopathological examination also confirmed the pathological improvement in liver. Nanocapsulated plant origin flavonoidal compound may be a potent formulation in combating arsenic induced upregulation of gene expression of liver fibrosis through a complete protection against oxidative attack in hepatic cells of rat liver.


Free Radical Biology and Medicine | 2011

Encapsulation of the flavonoid quercetin with an arsenic chelator into nanocapsules enables the simultaneous delivery of hydrophobic and hydrophilic drugs with a synergistic effect against chronic arsenic accumulation and oxidative stress

Swarupa Ghosh; Sandhya Rekha Dungdung; Somsubhra Thakur Chowdhury; Ardhendu K. Mandal; Sibani Sarkar; Debasree Ghosh; Nirmalendu Das

Chronic arsenic exposure causes oxidative stress and mitochondrial dysfunction in the liver and brain. The ideal treatment would be to chelate arsenic and prevent oxidative stress. meso-2,3-Dimercaptosuccinic acid (DMSA) is used to chelate arsenic but its hydrophilicity makes it membrane-impermeative. Conversely, quercetin (QC) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, and it is not possible to solubilize these two compounds in a single nontoxic solvent. Nanocapsules have emerged as a potent drug delivery system and make it feasible to incorporate both hydrophilic and lipophilic compounds. Nanoencapsulated formulations with QC and DMSA either alone or coencapsulated in polylactide-co-glycolide [N(QC+DMSA)] were synthesized to explore their therapeutic application in a rat model of chronic arsenic toxicity. These treatments were compared to administration of quercetin or DMSA alone using conventional delivery methods. Both nanoencapsulated quercetin and nanoencapsulated DMSA were more effective at decreasing oxidative injury in liver or brain compared to conventional delivery methods, but coencapsulation of quercetin and DMSA into nanoparticles had a marked synergistic effect, decreasing liver and brain arsenic levels from 9.5 and 4.8μg/g to 2.2 and 1.5μg/g, respectively. Likewise, administration of coencapsulated quercetin and DMSA virtually normalized changes in mitochondrial function, formation of reactive oxygen species, and liver injury. We conclude that coencapsulation of quercetin and DMSA may provide a more effective therapeutic strategy in the management of arsenic toxicity and also presents a novel way of combining hydrophilic and hydrophobic drugs into a single delivery system.


Drug Delivery | 2011

Hepatoprotective and neuroprotective activity of liposomal quercetin in combating chronic arsenic induced oxidative damage in liver and brain of rats.

Aparajita Ghosh; Ardhendu K. Mandal; Sibani Sarkar; Nirmalendu Das

Context: Arsenic is a naturally occurring toxicant that causes acute and chronic adverse health effects, including cancer. Objective: The study was performed to evaluate the therapeutic efficacy of liposome entrapped flavonoidal quercetin in combating arsenic toxicity mediated oxidative damage in hepatocytes and brain cells in rat model. Materials and methods: Hepatic and neuronal cell damage in rats was made by daily arsenic (6mg/kg b wt, 9 mg/kg b wt and 12 mg/kg b wt) treatment via oral route for four consecutive months. Liposomal quercetin (2.71mg QC/kg b. wt) were injected s.c. on rats treated with 12 mg/kg b. wt. NaAsO2 twice a week for four months. Results and Discussion: Inorganic arsenic deposition was found to be most significant in hepatic (9.32 ± 0.100 µg/g tissue) and neuronal (6.21 ± 0.090 µg/g tissue) cells of rats treated with 12 mg/kg b wt of arsenite. Antioxidant levels in hepatic and neuronal cells were reduced significantly by the induction of arsenic. Liposomal quercetin was found most potent for a complete prevention of arsenite-induced reduction in antioxidant levels in the liver and brain of rats. Arsenic induced a substantial increase in hepatic hydroxyproline (HP) and Liposomal quercetin treatment resulted in complete replenishment of the HP level to normal. Liposomal quercetin completely prevented the arsenite-induced upregulation of cytochrome c expression in liver and brain significantly suggesting that the protective effect of Liposomal quercetin could be related to the reduction of arsenic deposition in both the organs. Conclusion: Thus, Liposomal quercetin might prove to be of therapeutic potential against arsenite-induced hepatic and neuronal cell damage in rats.


European Journal of Cancer Prevention | 2012

Anticarcinogenic activity of nanoencapsulated quercetin in combating diethylnitrosamine-induced hepatocarcinoma in rats.

Aparajita Ghosh; Debasree Ghosh; Sibani Sarkar; Ardhendu K. Mandal; Somsubhra Thakur Choudhury; Nirmalendu Das

Hepatocellular carcinoma is the most common primary hepatic malignancy worldwide. N-Nitroso compounds act as strong carcinogens in various animals, including primates. Diethylnitrosamine (DEN) is a well known carcinogenic substance, which induces hepatic carcinoma. The theme of the study was to evaluate the therapeutic efficacy of nanoencapsulated flavonoidal quercetin (3,5,7,3′,4′-pentahydroxy flavone, QC) in combating DEN-induced hepatocarcinogenesis in rats. DEN induced a substantial increase in relative liver weights with proliferation and development of hyperplastic nodules. A significant increase in hepatocellular and nephrotoxicity indicated by serum alkaline phosphatase, aspartate transaminase, alanine transaminase, urea, and creatinine was observed in DEN-treated animals. Maximum protection from such toxicity was provided by nanoparticulated QC. Elevated levels of conjugated diene in DEN-treated rats were lowered significantly by nanoparticulated QC. Antioxidant levels in hepatic cells were reduced significantly by the induction of DEN. Nanoparticulated QC was found most potent for complete prevention of DEN-induced reduction in antioxidant levels in the liver. Upregulation of glutathione-S-transferase activity by DEN induction was reduced maximally by nanoencapsulated QC. Nanoencapsulated QC completely protected the mitochondrial membrane of the liver from carcinoma mediated by DEN injection. A significant correlation could be drawn between DEN-induced tissue reactive oxygen species generation and cytochrome C expression in the liver. Nanoencapsulated QC completely prevented the DEN-induced cytochrome C expression in the liver significantly.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma

Ardhendu K. Mandal; Debasree Ghosh; Sibani Sarkar; Aparajita Ghosh; Snehasikta Swarnakar; Nirmalendu Das

AIMS The aims of our work were to investigate the controlling role and the efficacy of nanocapsulated quercetin drug delivery system on the decrement of inflammatory mediators such as MMP-13 in diethyl nitrosamine (DEN)-induced hepatocarcinogenesis. MATERIALS & METHODS Hepatocellular carcinoma was developed in the Swiss albino rats by the exposure of DEN. DEN administration caused the generation of reactive oxygen species, upregulation of TNF-α, IL-6, activation of MMP-13, severe oxidative damage, hyperplastic nodules with preneoplastic lesions and the histopathological changes in rat liver. RESULTS & CONCLUSION Nanocapsulated quercetin treatment restricted all alterations in DEN-mediated development of hepatocarcinogenesis. Therefore, it may be concluded that nanocapsulated quercetin may be accepted as a potent therapeutic formulation in preventing DEN-mediated hepatocarcinogenesis.

Collaboration


Dive into the Sibani Sarkar's collaboration.

Top Co-Authors

Avatar

Nirmalendu Das

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Ardhendu K. Mandal

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Aparajita Ghosh

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Swarupa Ghosh

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Debasree Ghosh

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Snehasikta Swarnakar

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Abhishek Mukherjee

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Somsubhra Thakur Choudhury

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Krishna Das Saha

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Sandhya Rekha Dungdung

Indian Institute of Chemical Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge