Sibei Yang
Beijing Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sibei Yang.
Science China-mathematics | 2012
Dachun Yang; Sibei Yang
Let φ: ℝn × [0,∞) → [0,∞) be a function such that φ(x, ·) is an Orlicz function and
Communications in Contemporary Mathematics | 2013
Shaoxiong Hou; Dachun Yang; Sibei Yang
Analysis and Geometry in Metric Spaces | 2013
Jun Cao; Luong Dang Ky; Dachun Yang; Sibei Yang
\phi ( \cdot ,t) \in \mathbb{A}_\infty ^{loc} \left( {\mathbb{R}^n } \right)
Applicable Analysis | 2014
Jun Cao; Der-Chen Chang; Dachun Yang; Sibei Yang
Journal of Geometric Analysis | 2014
Dachun Yang; Sibei Yang
(the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space hφ(ℝn) by the local grand maximal function, and a local BMO-type space bmoφ(ℝn) which is further proved to be the dual space of hφ(ℝn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmoφ(ℝn), characterized by Nakai and Yabuta, is just the dual of
Transactions of the American Mathematical Society | 2013
Jun Cao; Der-Chen Chang; Dachun Yang; Sibei Yang
Science China-mathematics | 2011
Yiyu Liang; Dachun Yang; Sibei Yang
L^1 \left( {\mathbb{R}^n } \right) + h_{\Phi _0 } \left( {\mathbb{R}^n } \right)
Taiwanese Journal of Mathematics | 2013
Jun Cao; Luong Dang Ky; Dachun Yang; Sibei Yang
Dissertationes Mathematicae | 2011
Dachun Yang; Sibei Yang
, where ϕ is an increasing function on (0,∞) satisfying some additional growth conditions and Φ0 a Musielak-Orlicz function induced by ϕ. Characterizations of hφ(ℝn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic characterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of hφ(ℝn), from which, the authors further deduce some criterions for the boundedness on hφ(ℝn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on hφ(ℝn).
Transactions of the American Mathematical Society | 2016
Jun Cao; Der-Chen Chang; Dachun Yang; Sibei Yang
Lusin Area Function and Molecular Characterizations of Musielak-Orlicz Hardy Spaces and Their ApplicationsLet