Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sibylle Grad is active.

Publication


Featured researches published by Sibylle Grad.


Biomaterials | 2003

The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations.

Sibylle Grad; Laszlo Kupcsik; Katarzyna Gorna; Sylwester Gogolewski; Mauro Alini

The aim of the present study was to evaluate the capability of novel biodegradable polyurethane scaffolds to support attachment, growth and maintenance of differentiated chondrocytes in vitro for up to 42 days. After an initial decrease, although not significant, the DNA content of the constructs remained constant over the culture time. A progressive increase in glycosaminoglycans and collagen was observed during the culture period. However, a significant release of matrix molecules into the culture medium was also noticeable. At the transcriptional level, a decrease in aggrecan and procollagen II mRNA expression was noticeable, whereas procollagen I expression was increased. To conclude, the present data demonstrate that biodegradable polyurethane porous scaffolds seeded with articular chondrocytes support cell attachment and the production of extracellular matrix proteins. The limitations of the system are the diffusion of large amounts of matrix molecules into the culture medium and the dedifferentiation of the chondrocytes with prolonged time in culture. However, due to the favourable mechanical properties of the polyurethane scaffold, stimulation of chondrocytes by mechanical loading can be considered in order to improve the formation of a functional cartilage-like extracellular matrix.


Spine | 2003

Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo

Jeffery J. MacLean; Cynthia R. Lee; Sibylle Grad; Keita Ito; Mauro Alini; James C. Iatridis

Study Design. An in vivo analysis of the intervertebral disc’s cellular response to dynamic compression and immobilization was performed using a rat-tail model. Objective. To assess the effects of immobilization and short-term dynamic compression on intervertebral disc cell expression of anabolic and catabolic genes. Summary of Background Data. Static compressive loads applied in vivo alter the composition of the disc matrix and cell viability in a dose-dependent manner. The effects of in vivo dynamic compression, which is a more physiologic load, and reported risk factor for low back pain have not been investigated. Methods. An Ilizarov-type device was implanted on the rat tail and used to determine the effects from 72 hours of immobilization (n = 6), 2 hours of dynamic compression (1 MPa/0.2 Hz) (n = 8), and the coupled effect of immobilization followed by compression (n = 8). Real-time reverse transcription-polymerase chain reaction was used to measure changes in anabolic and catabolic gene levels relative to both internal control subjects and a sham-operated group (n = 7). Results. Immobilization and dynamic compression affect anabolic and catabolic genes, with an overall downregulation of types 1 and 2 collagen and upregulation of aggrecanase, collagenase, and stromelysin in the anulus. The effects of immobilization and compression appear to be additive for collagen types 1 and 2 in the anulus, but not in the nucleus, and not for catabolic genes. Conclusions. Short-duration dynamic compression and immobilization alter gene expression in the rat disc. In studying the response of the disc to loading, it is necessary to look at both anabolic and catabolic pathways, and to consider strain history.


Nature Communications | 2012

Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc

Daisuke Sakai; Yoshihiko Nakamura; Tomoko Nakai; Taishi Mishima; Shunichi Kato; Sibylle Grad; Mauro Alini; Danny Chan; Kathryn S. E. Cheah; Ken Ichi Yamamura; Koichi Masuda; Hideyuki Okano; Kiyoshi Ando; Joji Mochida

Despite the high prevalence of intervertebral disc disease, little is known about changes in intervertebral disc cells and their regenerative potential with ageing and intervertebral disc degeneration. Here we identify populations of progenitor cells that are Tie2 positive (Tie2+) and disialoganglioside 2 positive (GD2+), in the nucleus pulposus from mice and humans. These cells form spheroid colonies that express type II collagen and aggrecan. They are clonally multipotent and differentiated into mesenchymal lineages and induced reorganization of nucleus pulposus tissue when transplanted into non-obese diabetic/severe combined immunodeficient mice. The frequency of Tie2+ cells in tissues from patients decreases markedly with age and degeneration of the intervertebral disc, suggesting exhaustion of their capacity for regeneration. However, progenitor cells (Tie2+GD2+) can be induced from their precursor cells (Tie2+GD2-) under simple culture conditions. Moreover, angiopoietin-1, a ligand of Tie2, is crucial for the survival of nucleus pulposus cells. Our results offer insights for regenerative therapy and a new diagnostic standard.


European Spine Journal | 2007

A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat

Cynthia Lee; Daisuke Sakai; Tomoko Nakai; Kanae Toyama; Joji Mochida; Mauro Alini; Sibylle Grad

The basic molecular characteristics of intervertebral disc cells are still poorly defined. This study compared the phenotypes of nucleus pulposus (NP), annulus fibrosus (AF) and articular cartilage (AC) cells using rat coccygeal discs and AC from both young and aged animals and a combination of microarray, real-time RT-PCR and immunohistochemistry. Microarray analysis identified 63 genes with at least a fivefold difference in fluorescence intensity between the NP and AF cells and 41 genes with a fivefold or greater difference comparing NP cells and articular chondrocytes. In young rats, the relative mRNA levels, assessed by real-time RT-PCR, of annexin A3, glypican 3 (gpc3), keratin 19 (k19) and pleiotrophin (ptn) were significantly higher in NP compared to AF and AC samples. Furthermore, vimentin (vim) mRNA was higher in NP versus AC, and expression levels of cartilage oligomeric matrix protein (comp) and matrix gla protein (mgp) were lower in NP versus AC. Higher NP levels of comp and mgp mRNA and higher AF levels of gpc3, k19, mgp and ptn mRNA were found in aged compared to young tissue. However, the large differences between NP and AC expression of gpc3 and k19 were obvious even in the aged animals. Furthermore, the differences in expression levels of gpc3 and k19 were also evident at the protein level, with intense immunostaining for both proteins in NP and non-existent immunoreaction in AF and AC. Future studies using different species are required to evaluate whether the expression of these molecules can be used to characterize NP cells and distinguish them from other chondrocyte-like cells.


Biomaterials | 2011

An injectable vehicle for nucleus pulposus cell-based therapy

Estelle Collin; Sibylle Grad; Dimitrios I. Zeugolis; Claire Vinatier; Johann Clouet; Jérôme Guicheux; Pierre Weiss; Mauro Alini; Abhay Pandit

An injectable hydrogel, acting as a reservoir for cell delivery and mimicking the native environment, offers promise for nucleus pulposus (NP) repair and regeneration. Herein, the potential of a stabilised type II collagen hydrogel using poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG) cross-linker, enriched with hyaluronic acid (HA) was investigated. The optimally stabilised type II collagen hydrogel was determined by assessing free amine groups, resistance to enzymatic degradation, gel point. The potential toxicity of the cross-linker was initially assessed against adipose-derived stem cells (ADSCs). After addition of HA (molar ratio type II collagen:HA 9:0, 9:1, 9:4.5, 9:9) within the hydrogel, the behaviour of the encapsulated NP cells was evaluated using cell proliferation assay, gene expression analysis, cell distribution and cell morphology. A significant decrease (p < 0.05) in the free amine groups of collagen was observed, confirming successful cross-linking. Gelation was independent of the concentration of 4S-StarPEG (8 min at 37 °C). The 1 mm cross-linked hydrogel yielded the most stable after enzymatic degradation (p < 0.05). No toxicity of the 4S-StarPEG was noted for the ADSCs. NP cell viability was high regardless of the concentration of HA (>80%). A cell proliferation was not seen after 14 days in its presence. At a gene expression level, HA did not influence NP cells phenotype after seven days in culture. After seven days in culture, the type I collagen mRNA expression was maintained (p > 0.05). The optimally stabilised and functionalised type II collagen/HA hydrogel system developed in this study shows promise as an injectable reservoir system for intervertebral disc regeneration.


Clinical Orthopaedics and Related Research | 2011

Physical Stimulation of Chondrogenic Cells In Vitro: A Review

Sibylle Grad; David Eglin; Mauro Alini; Martin J. Stoddart

BackgroundMechanical stimuli are of crucial importance for the development and maintenance of articular cartilage. For conditioning of cartilaginous tissues, various bioreactor systems have been developed that have mainly aimed to produce cartilaginous grafts for tissue engineering applications. Emphasis has been on in vitro preconditioning, whereas the same devices could be used to attempt to predict the response of the cells in vivo or as a prescreening method before animal studies. As a result of the complexity of the load and motion patterns within an articulating joint, no bioreactor can completely recreate the in vivo situation.Questions/purposesThis article aims to classify the various loading bioreactors into logical categories, highlight the response of mesenchymal stem cells and chondrocytes to the various stimuli applied, and determine which data could be used within a clinical setting.MethodsWe performed a Medline search using specific search terms, then selectively reviewed relevant research relating to physical stimulation of chondrogenic cells in vitro, focusing on cellular responses to the specific load applied.ResultsThere is much data pertaining to increases in chondrogenic gene expression as a result of controlled loading protocols. Uniaxial loading leads to selective upregulation of genes normally associated with a chondrogenic phenotype, whereas multiaxial loading results in a broader pattern of chondrogenic gene upregulation. The potential for the body to be used as an in vivo bioreactor is being increasingly explored.ConclusionsBioreactors are important tools for understanding the potential response of chondrogenic cells within the joint environment. However, to replicate the natural in vivo situation, more complex motion patterns are required to induce more physiological chondrogenic gene upregulation.


Spine | 2009

Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus.

Daisuke Sakai; Tomoko Nakai; Joji Mochida; Mauro Alini; Sibylle Grad

Study Design. Microarray gene expression profiling, quantitative gene expression analysis, and immunohistochemistry was used to investigate molecular variations between nucleus pulposus (NP) and anulus fibrosus (AF) of the dog intervertebral disc (IVD). Objective. To identify specific molecules with differing expression patterns in NP and AF and compare their profile with articular cartilage (AC). Summary of Background Data. Although experimental and animal studies have demonstrated the potential of cell based approaches for NP regeneration, there is still a deficiency of basic knowledge about the phenotype of IVD cells. Methods. Comparative microarray analysis of beagle lumbar NP and AF was performed. Molecules of interest were evaluated by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry, comparing lumbar and coccygeal NP and AF and AC. To assess interspecies variations, genes that had been found differentially expressed in rat tissues were also investigated. Results. Forty-five genes with NP/AF signal log ratio ≥1 were identified. &agr;-2-Macroglobulin, cytokeratin-18, and neural cell adhesion molecule (CD56) mRNA were higher in NP compared to AF and AC, and desmocollin-2 mRNA was higher in NP than AF. The expression profiles were similar in lumbar and coccygeal discs, although certain variations were noticed. Interspecies differences between rat and dog were evident in the expression of several genes. Immunohistochemistry confirmed differences in gene expression at the protein level. Conclusion. This study reports on the expression of molecules that have not been described previously in IVD, in non-notochordal discs comparable with human. Interspecies differences were noted between rat and dog tissues, whereas variations between caudal and lumbar discs were less prominent. The NP of the beagle as a chondrodystrophoid dog breed is potentially more similar to the human than the NP of species whose discs do not naturally degenerate. Therefore, studies on appropriate species may contribute to a better understanding of the cell types residing in the IVD.


Journal of Anatomy | 2012

Diversity of intervertebral disc cells: phenotype and function

Girish Pattappa; Zhen Li; Marianna Peroglio; Nadine Wismer; Mauro Alini; Sibylle Grad

The intervertebral disc (IVD) is a moderately moving joint that is located between the bony vertebrae and provides flexibility and load transmission throughout the spinal column. The disc is composed of different but interrelated tissues, including the central highly hydrated nucleus pulposus (NP), the surrounding elastic and fibrous annulus fibrosus (AF), and the cartilaginous endplate (CEP), which provides the connection to the vertebral bodies. Each of these tissues has a different function and consists of a specific matrix structure that is maintained by a cell population with distinct phenotype. Although the healthy IVD is able to balance the slow matrix turnover of synthesis and degradation, this balance is often disturbed, leading to degenerative disorders. Successful therapeutic management of IVD degeneration requires a profound understanding of the cellular and molecular characteristics of the functional IVD. Hence, the phenotype of IVD cells has been of significant interest from multiple perspectives, including development, growth, remodelling, degeneration and repair. One major challenge that complicates our understanding of the disc cells is that both the cellular phenotype and the extracellular matrix strongly depend on disc maturity and health and as a consequence are continuously evolving. This review delineates the diversity of the cell types found in the intervertebral disc, with emphasis on human, but with reference to other species. The cells of the NP appear rounded and express a proteoglycan‐rich matrix, whereas the more elongated AF cells are embedded in a collagen fibre matrix and the CEPs represent a layer of cartilage. Even though all disc cells have often been referred to as ‘intervertebral disc chondrocytes’, distinct phenotypical differences in comparison with articular chondrocytes exist and have been reported recently. The availability of more specific markers has also improved our understanding of progenitor cell differentiation towards an IVD cell phenotype. Ultimately, new cell‐ and tissue‐engineering approaches to regenerative therapies will only be successful if the specific characteristics of the individual tissues and their context in the function of the whole organ, are taken into consideration.


Osteoarthritis and Cartilage | 2010

Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration

J.P.H.J. Rutges; Laura B. Creemers; Wouter J.A. Dhert; S. Milz; Daisuke Sakai; J. Mochida; Mauro Alini; Sibylle Grad

OBJECTIVE Regardless of recent progress in the elucidation of intervertebral disc (IVD) degeneration, the basic molecular characteristics that define a healthy human IVD are largely unknown. Although work in different animal species revealed distinct molecules that might be used as characteristic markers for IVD or specifically nucleus pulposus (NP) cells, the validity of these markers for characterization of human IVD cells remains unknown. DESIGN Eleven potential marker molecules were characterized with respect to their occurrence in human IVD cells. Gene expression levels of NP were compared with annulus fibrosus (AF) and articular cartilage (AC) cells, and potential correlations with aging were assessed. RESULTS Higher mRNA levels of cytokeratin-19 (KRT19) and of neural cell adhesion molecule-1 were noted in NP compared to AF and AC cells. Compared to NP cytokeratin-18 expression was lower in AC, and alpha-2-macroglobulin and desmocollin-2 lower in AF. Cartilage oligomeric matrix protein (COMP) and glypican-3 expression was higher in AF, while COMP, matrix gla protein (MGP) and pleiotrophin expression was higher in AC cells. Furthermore, an age-related decrease in KRT19 and increase in MGP expression were observed in NP cells. The age-dependent expression pattern of KRT19 was confirmed by immunohistochemistry, showing the most prominent KRT19 immunoreaction in the notochordal-like cells in juvenile NP, whereas MGP immunoreactivity was not restricted to NP cells and was found in all age groups. CONCLUSIONS The gene expression of KRT19 has the potential to characterize human NP cells, whereas MGP cannot serve as a characteristic marker. KRT19 protein expression was only detected in NP cells of donors younger than 54 years.


Regenerative Medicine | 2009

Cells and biomaterials in cartilage tissue engineering

Martin J. Stoddart; Sibylle Grad; David Eglin; Mauro Alini

Cartilage defects are notoriously difficult to repair and owing to the long-term prognosis of osteoarthritis, and a rapidly aging population, a need for new therapies is pressing. Cell-based therapies for cartilage regeneration were introduced into patients in the early 1990s. Since that time the technology has developed from a simple cell suspension to more complex 3D structures. Cells, both chondrocytes and stem cells, have been incorporated into scaffold material with the aim to better recreate the natural environment of the cell, while providing more structural support to withstand the large forces applied on the de novo tissue. This review aims to provide an overview of potential cell sources and different scaffold materials, which are in development for cartilage tissue engineering.

Collaboration


Dive into the Sibylle Grad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marianna Peroglio

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Eglin

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhay Pandit

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge