Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siddarame Gowda is active.

Publication


Featured researches published by Siddarame Gowda.


Journal of Virology | 2000

Sequences of Citrus Tristeza Virus Separated in Time and Space Are Essentially Identical

María R. Albiach-Martí; Munir Mawassi; Siddarame Gowda; Tatineni Satyanarayana; Mark E. Hilf; Savita Shanker; Ernesto C. Almira; María C. Vives; Carmelo López; José Guerri; Ricardo Flores; Pedro Moreno; Steve M. Garnsey; William O. Dawson

ABSTRACT The first Citrus tristeza virus (CTV) genomes completely sequenced (19.3-kb positive-sense RNA), from four biologically distinct isolates, are unexpectedly divergent in nucleotide sequence (up to 60% divergence). Understanding of whether these large sequence differences resulted from recent evolution is important for the design of disease management strategies, particularly the use of genetically engineered mild (essentially symptomless)-strain cross protection and RNA-mediated transgenic resistance. The complete sequence of a mild isolate (T30) which has been endemic in Florida for about a century was found to be nearly identical to the genomic sequence of a mild isolate (T385) from Spain. Moreover, samples of sequences of other isolates from distinct geographic locations, maintained in different citrus hosts and also separated in time (B252 from Taiwan, B272 from Colombia, and B354 from California), were nearly identical to the T30 sequence. The sequence differences between these isolates were within or near the range of variability of the T30 population. A possible explanation for these results is that the parents of isolates T30, T385, B252, B272, and B354 have a common origin, probably Asia, and have changed little since they were dispersed throughout the world by the movement of citrus. Considering that the nucleotide divergence among the other known CTV genomes is much greater than those expected for strains of the same virus, the remarkable similarity of these five isolates indicates a high degree of evolutionary stasis in some CTV populations.


Archives of Virology | 1998

Peanut yellow spot virus is a member of a new serogroup of Tospovirus genus based on small (S) RNA sequence and organization

T. Satyanarayana; Siddarame Gowda; K. L. Reddy; S. E. Mitchell; William O. Dawson; D. V. R. Reddy

SummaryPeanut yellow spot virus (PYSV) represents a distinct tospovirus species based on serology and nucleic acid hybridization. The sequence of the S RNA was 2 970 nucleotides with 22 nucleotide long inverted repeats (with three mismatches) at the termini. The coding was ambisense with a long open reading frame (ORF) in each strand. The 5′-large ORF (1 440 nucleotides in the viral sense (v) strand) encoded a protein with a predicted size of 53.2 kDa that was identified as the nonstructural (NSs) protein based on 16–21% sequence identity and 42– 48% sequence similarity with other tospoviruses. A 3′ ORF (741 nucleotides) in the virus complementary (vc) sense encoded a 28.0 kDa protein that was identified as the nucleocapsid (N) gene based on immunoblot analysis of the {in vitro} expressed protein with PYSV polyclonal antiserum. The predicted N protein had 24–28% amino acid sequence identity and 44–51% sequence similarity with the members of other serogroups. In contrast to other tospoviruses, a third ORF (204 nucleotides) occurred in the vc strand, which could encode a protein with a predicted size of 7.5 kDa with two strong hydrophobic regions. The low degree of homology of N and NSs protein sequences with other serogroup members coupled with an additional ORF suggests that PYSV should be classified as a distinct species of the Tospovirus genus. This conclusion also is supported by the absence of serological cross reaction with other serogroups, and biological characteristics including thrips transmission, symptoms and host range.


Journal of Biotechnology | 2014

Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing)

Subhas Hajeri; Nabil Killiny; Choaa El-Mohtar; William O. Dawson; Siddarame Gowda

A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control.


PLOS ONE | 2007

Persistent Infection and Promiscuous Recombination of Multiple Genotypes of an RNA Virus within a Single Host Generate Extensive Diversity

Ziming Weng; Roger Barthelson; Siddarame Gowda; Mark E. Hilf; William O. Dawson; David W. Galbraith; Zhongguo Xiong

Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses.


PLOS ONE | 2014

Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

Nabil Killiny; Subhas Hajeri; Siddharth Tiwari; Siddarame Gowda; Lukasz L. Stelinski

Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.


Frontiers in Microbiology | 2013

Citrus tristeza virus-host interactions

William O. Dawson; Stephen M. Garnsey; Satyanarayana Tatineni; Svetlana Y. Folimonova; Scott J. Harper; Siddarame Gowda

Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or symptomless in most of their host range. There is little understanding of how the virus causes severe disease in some citrus and none in others. Movement and distribution of CTV differs considerably from that of well-studied viruses of herbaceous plants where movement occurs largely through adjacent cells. In contrast, CTV systemically infects plants mainly by long-distance movement with only limited cell-to-cell movement. The virus is transported through sieve elements and occasionally enters an adjacent companion or phloem parenchyma cell where virus replication occurs. In some plants this is followed by cell-to-cell movement into only a small cluster of adjacent cells, while in others there is no cell-to-cell movement. Different proportions of cells adjacent to sieve elements become infected in different plant species. This appears to be related to how well viral gene products interact with specific hosts. CTV has three genes (p33, p18, and p13) that are not necessary for infection of most of its hosts, but are needed in different combinations for infection of certain citrus species. These genes apparently were acquired by the virus to extend its host range. Some specific viral gene products have been implicated in symptom induction. Remarkably, the deletion of these genes from the virus genome can induce large increases in stem pitting (SP) symptoms. The p23 gene, which is a suppressor of RNA silencing and a regulator of viral RNA synthesis, has been shown to be the cause of seedling yellows (SY) symptoms in sour orange. Most isolates of CTV in nature are populations of different strains of CTV. The next frontier of CTV biology is the understanding how the virus variants in those mixtures interact with each other and cause diseases.


PLOS ONE | 2013

Silencing Abnormal Wing Disc Gene of the Asian Citrus Psyllid, Diaphorina citri Disrupts Adult Wing Development and Increases Nymph Mortality

Ibrahim El-Shesheny; Subhas Hajeri; Ibrahim El-Hawary; Siddarame Gowda; Nabil Killiny

Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5th) of the nymphal stage. Micro-application (topical application) of dsRNA to 5th instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.


PLOS ONE | 2012

The Destructive Citrus Pathogen, ‘Candidatus Liberibacter asiaticus’ Encodes a Functional Flagellin Characteristic of a Pathogen-Associated Molecular Pattern

Huasong Zou; Siddarame Gowda; Lijuan Zhou; Subhas Hajeri; Gongyou Chen; Yongping Duan

Huanglongbing (HLB) is presently the most devastating citrus disease worldwide. As an intracellular plant pathogen and insect symbiont, the HLB bacterium, ‘Candidatus Liberibacter asiaticus’ (Las), retains the entire flagellum-encoding gene cluster in its significantly reduced genome. Las encodes a flagellin and hook-associated protein (Fla) of 452 amino acids that contains a conserved 22 amino acid domain (flg22) at positions 29 to 50 in the N-terminus. The phenotypic alteration in motility of a Sinorhizobium meliloti mutant lacking the fla genes was partially restored by constitutive expression of FlaLas. Agrobacterium-mediated transient expression in planta revealed that FlaLas induced cell death and callose deposition in Nicotiana benthamiana, and that the transcription of BAK1 and SGT1, which are associated with plant innate immunity, was upregulated. Amino acid substitution experiments revealed that residues 38 (serine) and 39 (aspartate) of FlaLas were essential for callose induction. The synthetic flg22Las peptide could not induce plant cell death but retained the ability to induce callose deposition at a concentration of 20 µM or above. This demonstrated that the pathogen-associated molecular pattern (PAMP) activity of flg22 in Las was weaker than those in other well-studied plant pathogenic bacteria. These results indicate that FlaLas acts as a PAMP and may play an important role in triggering host plant resistance to the HLB bacteria.


Archives of Virology | 1998

Evidence that whitefly-transmitted cowpea mild mottle virus belongs to the genus Carlavirus

R. A. Naidu; Siddarame Gowda; T. Satyanarayana; V. Boyko; A. S. Reddy; William O. Dawson; D. V. R. Reddy

SummaryTwo strains of whitefly-transmitted cowpea mild mottle virus (CPMMV) causing severe (CPMMV-S) and mild (CPMMV-M) disease symptoms in peanuts were collected from two distinct agro-ecological zones in India. The host-range of these strains was restricted to Leguminosae and Chenopodiaceae, and each could be distinguished on the basis of symptoms incited in different hosts. The 3′-terminal 2500 nucleotide sequence of the genomic RNA of both the strains was 70% identical and contains five open reading frames (ORFs). The first three (P25, P12 and P7) overlap to form a triple gene block of proteins, P32 encodes the coat protein, followed by P12 protein located at the 3′ end of the genome. Genome organization and pair-wise comparisons of amino acid sequences of proteins encoded by these ORFs with corresponding proteins of known carlaviruses and potexviruses suggest that CPMMV-S and CPMMV-M are closely related to viruses in the genus Carlavirus. Based on the data, it is concluded that CPMMV is a distinct species in the genus Carlavirus.


Journal of Virology | 2003

Effects of Modification of the Transcription Initiation Site Context on Citrus Tristeza Virus Subgenomic RNA Synthesis

María A. Ayllón; Siddarame Gowda; Tatineni Satyanarayana; Alexander V. Karasev; Scott Adkins; Munir Mawassi; José Guerri; Pedro Moreno; William O. Dawson

ABSTRACT Citrus tristeza virus (CTV), a member of the Closteroviridae, has a positive-sense RNA genome of about 20 kb organized into 12 open reading frames (ORFs). The last 10 ORFs are expressed through 3′-coterminal subgenomic RNAs (sgRNAs) regulated in both amounts and timing. Additionally, relatively large amounts of complementary sgRNAs are produced. We have been unable to determine whether these sgRNAs are produced by internal promotion from the full-length template minus strand or by transcription from the minus-stranded sgRNAs. Understanding the regulation of 10 sgRNAs is a conceptual challenge. In analyzing commonalities of a replicase complex in producing so many sgRNAs, we examined initiating nucleotides of the sgRNAs. We mapped the 5′ termini of intermediate- (CP and p13) and low- (p18) produced sgRNAs that, like the two highly abundant sgRNAs (p20 and p23) previously mapped, all initiate with an adenylate. We then examined modifications of the initiation site, which has been shown to be useful in defining mechanisms of sgRNA synthesis. Surprisingly, mutation of the initiating nucleotide of the CTV sgRNAs did not prevent sgRNA accumulation. Based on our results, the CTV replication complex appears to initiate sgRNA synthesis with purines, preferably with adenylates, and is able to initiate synthesis using a nucleotide a few positions 5′ or 3′ of the native initiation nucleotide. Furthermore, the context of the initiation site appears to be a regulatory mechanism for levels of sgRNA production. These data do not support either of the established mechanisms for synthesis of sgRNAs, suggesting that CTV sgRNA production utilizes a different mechanism.

Collaboration


Dive into the Siddarame Gowda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Hilf

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Satyanarayana Tatineni

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge