Siddharth Parimal
Rensselaer Polytechnic Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siddharth Parimal.
Biotechnology and Bioengineering | 2012
Melissa A. Holstein; Siddharth Parimal; Scott A. McCallum; Steven M. Cramer
This study examines protein adsorption behavior and the effects of mobile phase modifiers in multimodal chromatographic systems. Chromatography results with a diverse protein library indicate that multimodal and ion exchange resins have markedly different protein binding behavior and selectivity. NMR results corroborate the stronger binding observed for the multimodal system and provide insight into the structural basis for the observed binding behavior. Protein‐binding affinity and selectivity in multimodal and ion exchange systems are then examined using a variety of mobile phase modifiers. Arginine and guanidine are found to have dramatic effects on protein adsorption, yielding changes in selectivity in both chromatographic systems. While sodium caprylate leads to slightly weaker chromatographic retention for most proteins, certain proteins exhibit significant losses in retention in both systems. The presence of a competitive binding mechanism between the multimodal ligand and sodium caprylate for binding to ubiquitin is confirmed using STD NMR. Polyol mobile phase modifiers are shown to result in increased retention for weakly bound proteins and decreased retention for strongly bound proteins, indicating that the overall retention behavior is determined by a balance between changes in electrostatic and hydrophobic interactions. This work provides an improved understanding of protein adsorption and mobile phase modifier effects in multimodal chromatographic systems and sets the stage for future work to develop more selective protein separation systems. Biotechnol. Bioeng. 2012;109: 176–186.
Langmuir | 2014
Kartik Srinivasan; Siddharth Parimal; Maria M. Lopez; Scott A. McCallum; Steven M. Cramer
Although multimodal chromatography offers significant potential for bioseparations, there is a lack of molecular level understanding of the nature of protein binding in these systems. In this study a nanoparticle system is employed that can simulate a chromatographic resin surface while also being amenable to isothermal titration calorimetry (ITC) and solution NMR. ITC and NMR titration experiments are carried out with (15)N-labeled ubiquitin to investigate the interactions of ubiquitin with nanoparticles functionalized with two industrially important multimodal ligands. The ITC results suggest that binding to both multimodal ligand surfaces is entropically driven over a range of temperatures and that this is due primarily to the release of surface bound waters. In order to reveal structural details of the interaction process, binding-induced chemical shift changes obtained from the NMR experiments are employed to obtain dissociation constants of individual amino acid residues on the protein surface. The residue level information obtained from NMR is then used to identify a preferred binding face on ubiquitin for interaction to both multimodal ligand surfaces. In addition, electrostatic potential and spatial aggregation propensity maps are used to determine important protein surface property data that are shown to correlate well with the molecular level information obtained from NMR. Importantly, the data demonstrate that the cluster of interacting residues on the protein surface act co-operatively to give rise to multimodal binding affinities several orders of magnitude greater than those obtained previously for interactions with free solution ligands. The use of NMR and ITC to study protein interactions with functionalized nanoparticles offers a new tool for obtaining important molecular and thermodynamic insights into protein affinity in multimodal chromatographic systems.
Journal of Chromatography A | 2012
Melissa A. Holstein; Wai Keen Chung; Siddharth Parimal; Alexander S. Freed; Blanca Barquera; Scott A. McCallum; Steven M. Cramer
Site-directed mutagenesis, nuclear magnetic resonance (NMR) chemical shift perturbation experiments, and molecular dynamics (MD) simulations are employed in concert with chromatographic experiments to provide insight into protein-ligand interactions in multimodal chromatographic systems. In previous studies, a preferred binding region was identified on the surface of the protein ubiquitin for binding with a multimodal ligand. In this study, site-directed mutagenesis is used to enable direct NMR evaluation of the mutant protein as compared to the wild type. It is found that reversing the charge of a key residue (K6E) in the proposed preferred binding region results in substantial decreases in the magnitude of the ligand-induced NMR chemical shift perturbations relative to those detected for the wild type protein, particularly for residues located within the preferred binding region. These NMR results also indicate a decrease in ligand affinity, consistent with the weaker chromatographic retention observed for the mutant as compared to the wild type on a multimodal cation exchange resin. MD simulation results provide additional insight at a molecular level and demonstrate that many residues located within the preferred binding region exhibit weaker binding interactions due to the mutation. The analysis suggests that multimodal ligand binding consists of initial localization of the ligand by long-ranged electrostatic interactions followed by multiple short-ranged synergistic interactions to attain high affinities of the ligand to specific residues.
Journal of Chromatography A | 2015
James Woo; Siddharth Parimal; Matthew R. Brown; Ryan Heden; Steven M. Cramer
The effects of spatial organization of hydrophobic and charged moieties on multimodal (MM) cation-exchange ligands were examined by studying protein retention behavior on two commercial chromatographic media, Capto™ MMC and Nuvia™ cPrime™. Proteins with extended regions of surface-exposed aliphatic residues were found to have enhanced retention on the Capto MMC system as compared to the Nuvia cPrime resin. The results further indicated that while the Nuvia cPrime ligand had a strong preference for interactions with aromatic groups, the Capto MMC ligand appeared to interact with both aliphatic and aromatic clusters on the protein surfaces. These observations were formalized into a new set of protein surface property descriptors, which quantified the local distribution of electrostatic and hydrophobic potentials as well as distinguishing between aromatic and aliphatic properties. Using these descriptors, high-performing quantitative structure-activity relationship (QSAR) models (R(2)>0.88) were generated for both the Capto MMC and Nuvia cPrime datasets at pH 5 and pH 6. Descriptors of electrostatic properties were generally common across the four models; however both Capto MMC models included descriptors that quantified regions of aliphatic-based hydrophobicity in addition to aromatic descriptors. Retention was generally reduced by lowering the ligand densities on both MM resins. Notably, elution order was largely unaffected by the change in surface density, but smaller and more aliphatic proteins tended to be more affected by this drop in ligand density. This suggests that modulating the exposure, shape and density of the hydrophobic moieties in multimodal chromatographic systems can alter the preference for surface exposed aliphatic or aromatic residues, thus providing an additional dimension for modulating the selectivity of MM protein separation systems.
Biotechnology and Bioengineering | 2015
Hanne Sophie Karkov; Berit Olsen Krogh; James Woo; Siddharth Parimal; Haleh Ahmadian; Steven M. Cramer
In this study, a unique set of antibody Fab fragments was designed in silico and produced to examine the relationship between protein surface properties and selectivity in multimodal chromatographic systems. We hypothesized that multimodal ligands containing both hydrophobic and charged moieties would interact strongly with protein surface regions where charged groups and hydrophobic patches were in close spatial proximity. Protein surface property characterization tools were employed to identify the potential multimodal ligand binding regions on the Fab fragment of a humanized antibody and to evaluate the impact of mutations on surface charge and hydrophobicity. Twenty Fab variants were generated by site‐directed mutagenesis, recombinant expression, and affinity purification. Column gradient experiments were carried out with the Fab variants in multimodal, cation‐exchange, and hydrophobic interaction chromatographic systems. The results clearly indicated that selectivity in the multimodal system was different from the other chromatographic modes examined. Column retention data for the reduced charge Fab variants identified a binding site comprising light chain CDR1 as the main electrostatic interaction site for the multimodal and cation‐exchange ligands. Furthermore, the multimodal ligand binding was enhanced by additional hydrophobic contributions as evident from the results obtained with hydrophobic Fab variants. The use of in silico protein surface property analyses combined with molecular biology techniques, protein expression, and chromatographic evaluations represents a previously undescribed and powerful approach for investigating multimodal selectivity with complex biomolecules. Biotechnol. Bioeng. 2015;112: 2305–2315.
Journal of Physical Chemistry B | 2014
Siddharth Parimal; Steven M. Cramer; Shekhar Garde
Protein-ligand interactions are central to many biological applications, including molecular recognition, protein formulations, and bioseparations. Complex, multisite ligands can have affinities for different locations on a proteins surface, depending on the chemical and topographical complementarity. We employ an approach based on the spherical harmonic expansion to calculate spatially resolved three-dimensional atomic density profiles of water and ligands in the vicinity of macromolecules. To illustrate the approach, we first study the hydration of model C180 buckyball solutes, with nonspherical patterns of hydrophobicity/-philicity on their surface. We extend the approach to calculate density profiles of increasingly complex ligands and their constituent groups around a protein (ubiquitin) in aqueous solution. Analysis of density profiles provides information about the binding face of the protein and the preferred orientations of ligands on the binding surface. Our results highlight that the spherical harmonic expansion based approach is easy to implement and efficient for calculation and visualization of three-dimensional density profiles around spherically nonsymmetric and topographically and chemically complex solutes.
Langmuir | 2013
Melissa A. Holstein; Siddharth Parimal; Scott A. McCallum; Steven M. Cramer
Nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations were employed in concert with chromatography to provide insight into the effect of urea on protein-ligand interactions in multimodal (MM) chromatography. Chromatographic experiments with a protein library in ion exchange (IEX) and MM systems indicated that, while urea had a significant effect on protein retention and selectivity for a range of proteins in MM systems, the effects were much less pronounced in IEX. NMR titration experiments carried out with a multimodal ligand, and isotopically enriched human ubiquitin indicated that, while the ligand binding face of ubiquitin remained largely intact in the presence of urea, the strength of binding was decreased. MD simulations were carried out to provide further insight into the effect of urea on MM ligand binding. These results indicated that, while the overall ligand binding face of ubiquitin remained the same, there was a reduction in the occupancy of the MM ligand interaction region along with subtle changes in the residues involved in these interactions. This work demonstrates the effectiveness of urea in enhancing selectivity in MM chromatographic systems and also provides an in-depth analysis of how MM ligand-protein interactions are altered in the presence of this fluid phase modifier.
Langmuir | 2015
Siddharth Parimal; Shekhar Garde; Steven M. Cramer
Fundamental understanding of protein-ligand interactions is important to the development of efficient bioseparations in multimodal chromatography. Here we employ molecular dynamics (MD) simulations to investigate the interactions of three different proteins--ubiquitin, cytochrome C, and α-chymotrypsinogen A, sampling a range of charge from +1e to +9e--with two multimodal chromatographic ligands containing similar chemical moieties--aromatic, carboxyl, and amide--in different structural arrangements. We use a spherical harmonic expansion to analyze ligand and individual moiety density profiles around the proteins. We find that the Capto MMC ligand, which contains an additional aliphatic group, displays stronger interactions than Nuvia CPrime ligand with all three proteins. Studying the ligand densities at the moiety level suggests that hydrophobic interactions play a major role in determining the locations of high ligand densities. Finally, the greater structural flexibility of the Capto MMC ligand compared to that of the Nuvia cPrime ligand allows for stronger structural complementarity and enables stronger hydrophobic interactions. These subtle and not-so-subtle differences in binding affinities and modalities for multimodal ligands can result in significantly different binding behavior towards proteins with important implications for bioprocessing.
Biotechnology Progress | 2017
Siddharth Parimal; Shekhar Garde; Steven M. Cramer
The addition of fluid phase modifiers provides significant opportunities for increasing the selectivity of multimodal chromatography. In order to optimize this selectivity, it is important to understand the fundamental interactions between proteins and these modifiers. To this end, molecular dynamics (MD) simulations were first performed to study the interactions of guanidine and arginine with three proteins. The simulation results showed that both guanidine and arginine interacted primarily with the negatively charged regions on the proteins and that these regions could be readily predicted using electrostatic potential maps. Protein surface characterization was then carried out using computationally efficient coarse‐grained techniques for a broader set of proteins which exhibited interesting chromatographic retention behavior upon the addition of these modifiers. It was shown that proteins exhibiting an increased retention in the presence of guanidine possessed hydrophobic regions adjacent to negatively charged regions on their surfaces. In contrast, proteins which exhibited a decreased binding in the presence of guanidine did not have hydrophobic regions adjacent to negatively charged patches. These results indicated that the effect of guanidine could be described as a combination of competitive binding, charge neutralization and increased hydrophobic interactions for certain proteins. In contrast, arginine resulted in a significant decrease in protein retention times primarily due to competition for the resin and steric effects, with minimal accompanying increase in hydrophobic interactions. The approach presented in this paper which employs MD simulations to guide the application of coarse‐grained approaches is expected to be extremely useful for methods development in downstream bioprocesses.
Langmuir | 2017
Kartik Srinivasan; Suvrajit Banerjee; Siddharth Parimal; Lars Sejergaard; Ronen Berkovich; Blanca Barquera; Shekhar Garde; Steven M. Cramer