Siddhartha P. Sarma
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siddhartha P. Sarma.
Proceedings of the National Academy of Sciences of the United States of America | 2014
V. Vamsee Aditya Mallajosyula; Michael Citron; Francesca Ferrara; Xianghan Lu; Cheryl Callahan; Gwendolyn J. Heidecker; Siddhartha P. Sarma; Jessica A. Flynn; Nigel J. Temperton; Xiaoping Liang; Raghavan Varadarajan
Significance Hemagglutinin (HA), the major influenza virus envelope glycoprotein, is the principal target of neutralizing antibodies. Wide diversity and variation of HA entails annual vaccination, as current vaccines typically fail to elicit/boost cross-reactive, broadly neutralizing antibodies (bnAbs). Although several bnAbs bind at the conserved stem of HA making it an attractive universal vaccine candidate, the metastable conformation of this domain imposes challenges in designing a stable, independently folding HA stem immunogen. We rationally designed a stem-fragment immunogen, mimicking the native HA stem that binds conformation-specific bnAbs with high affinity. The immunogen elicited bnAbs and conferred robust protection against lethal, heterologous virus challenge in vivo. Additionally, soluble bacterial expression of such a thermotolerant, disulfide-free immunogen allows for rapid scale-up during pandemic outbreak. Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and trimeric HA stem-fragment immunogen which mimics the native, prefusion conformation of HA and binds conformation specific bnAbs with high affinity. The immunogen elicited bnAbs that neutralized highly divergent group 1 (H1 and H5 subtypes) and 2 (H3 subtype) influenza virus strains in vitro. Stem immunogens designed from unmatched, highly drifted influenza strains conferred robust protection against a lethal heterologous A/Puerto Rico/8/34 virus challenge in vivo. Soluble, bacterial expression of such designed immunogens allows for rapid scale-up during pandemic outbreaks.
Nature Communications | 2014
Tuhin Bhowmick; Soumitra Ghosh; Karuna Dixit; Varsha Ganesan; Udupi A. Ramagopal; Debayan Dey; Siddhartha P. Sarma; Suryanarayanarao Ramakumar; Valakunja Nagaraja
The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.
Nature Structural & Molecular Biology | 1996
R. D. Guiles; Siddhartha P. Sarma; Russell J. DiGate; Debra L. Banville; Vladimir J. Basus; Irwin D. Kuntz; Lucy Waskell
The geometry of the ferricytochrome b5-ferricytochrome c complex has been analysed using long-range interprotein paramagnetic dipolar shifts. Heteronuclear filtered NMR spectra of samples containing 15N-labelled cytochrome b5 in complex with unlabelled cytochrome c allowed unambiguous assessment of pseudocontact shifts relative to diamagnetic reference states. Because pseudocontact shifts can be observed for protons as much as 20 Å from the paramagnetic centre, this approach allows study of electron transfer proteins in fast exchange. Our findings provide the first physical evidence confirming hypotheses presented in previous theoretical studies. The absence of certain predicted shifts that are expected based on the best fit to a static model of the complex suggests that cytochrome b5 is more dynamic in solution than in the crystal, in agreement with molecular dynamics simulations.
IUCrJ | 2014
Arijit Mukherjee; Karuna Dixit; Siddhartha P. Sarma; Gautam R. Desiraju
The Long-Range Synthon Aufbau Module (LSAM) concept is utilized in the crystal engineering of 1:1 cocrystals of trichlorophenols and halogen-substituted anilines. NMR studies show the presence of LSAMs in solution and also the sequence of association of hydrogen bonding and π⋯π stacking interations that constitute the LSAMs.
Annals of the New York Academy of Sciences | 2005
K. Hanumae Gowd; V. Sabareesh; S. Sudarslal; Prathima Iengar; Benjamin Franklin; Antony Fernando; Kalyan Dewan; Mani Ramaswami; Siddhartha P. Sarma; Sujit Kumar Sikdar; Padmanabhan Balaram; K. S. Krishnan
Highly structured small peptides are the major toxic constituents of the venom of cone snails, a family of widely distributed predatory marine molluscs. These animals use the venom for rapid prey immobilization. The peptide components in the venom target a wide variety of membrane‐bound ion channels and receptors. Many have been found to be highly selective for a diverse range of mammalian ion channels and receptors associated with pain‐signaling pathways. Their small size, structural stability, and target specificity make them attractive pharmacologic agents. A select number of laboratories mainly from the United States, Europe, Australia, Israel, and China have been engaged in intense drug discovery programs based on peptides from a few snail species. Coastal India has an estimated 20–30% of the known cone species; however, few serious studies have been reported so far. We have begun a comprehensive program for the identification and characterization of peptides from cone snails found in Indian Coastal waters. This presentation reviews our progress over the last 2 years. As expected from the evolutionary history of these venom components, our search has yielded novel peptides of therapeutic promise from the new species that we have studied.
Biochemistry | 2008
Ashima Mitra; Siddhartha P. Sarma
The unique multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been exploited to generate polypeptide fragments which, when cloned and expressed, reassemble in the presence of cofactors to yield a catalytically competent enzyme. Multidimensional multinuclear NMR methods have been employed for obtaining near complete sequence specific NMR assignments for backbone HN, 15N, 13Calpha and 13Cbeta atoms of the FAD binding domain of ilvB on samples that were isotopically enriched in 2H, 13C and 15N. Unambiguous assignments were obtained for 169 of 177 backbone Calpha atoms and 127 of 164 side chain Cbeta atoms. The secondary structure determined on the basis of observed 13Calpha secondary chemical shifts and sequential NOEs agrees well with the structure of this domain in the catalytic subunit of yeast AHAS. Binding of ilvN to the ilvBalpha and ilvBbeta domains was studied by both circular dichroism and isotope edited solution nuclear magnetic resonance methods. Changes in CD spectra indicate that ilvN interacts with ilvBalpha and ilvBbeta domains of the catalytic subunit and not with the ilvBgamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvBbeta and proximal to the intrasubunit ilvBalpha/ilvBbeta domain interface. The implication of this interaction on the role of the regulatory subunit on the activity of the holoenzyme is discussed.
Biochemistry | 2013
N. Megha Karanth; Siddhartha P. Sarma
The solution structure of IlvN, the regulatory subunit of Escherichia coli acetohydroxyacid synthase I, in the valine-bound form has been determined using high-resolution multidimensional, multinuclear nuclear magnetic resonance (NMR) methods. IlvN in the presence or absence of the effector molecule is present as a 22.5 kDa dimeric molecule. The ensemble of 20 low-energy structures shows a backbone root-mean-square deviation of 0.73 ± 0.13 Å and a root-mean-square deviation of 1.16 ± 0.13 Å for all heavy atoms. Furthermore, more than 98% of the backbone φ and ψ dihedral angles occupy the allowed and additionally allowed regions of the Ramachandran map, which is indicative of the fact that the structures are of high stereochemical quality. Each protomer exhibits a βαββαβα topology that is a characteristic feature of the ACT domain seen in metabolic enzymes. In the valine-bound form, IlvN exists apparently as a single conformer. In the free form, IlvN exists as a mixture of conformational states that are in intermediate exchange on the NMR time scale. Thus, a large shift in the conformational equilibrium is observed upon going from the free form to the bound form. The structure of the valine-bound form of IlvN was found to be similar to that of the ACT domain of the unliganded form of IlvH. Comparisons of the structures of the unliganded forms of these proteins suggest significant differences. The structural and conformational properties of IlvN determined here have allowed a better understanding of the mechanism of regulation of branched chain amino acid biosynthesis.
Journal of Biomolecular NMR | 1996
Siddhartha P. Sarma; Russell J. DiGate; Debra L. Banville; R. D. Guiles
SummaryModern multidimensional double- and triple-resonance NMR methods have been applied to assign the backbone and side-chain 13C resonances for both equilibrium conformers of the paramagnetic form of rat liver microsomal cytochrome b5. The assignment of backbone 13C resonances was used to confirm previous 1H and 15N resonance assignments [Guiles, R.D. et al. (1993) Biochemistry, 32, 8329–8340]. On the basis of short- and medium-range NOEs and backbone 13C chemical shifts, the solution secondary structure of rat cytochrome b5 has been determined. The striking similarity of backbone 13C resonances for both equilibrium forms strongly suggests that the secondary structures of the two isomers are virtually identical. It has been found that the 13C chemical shifts of both backbone and side-chain atoms are relatively insensitive to paramagnetic effects. The reliability of such methods in anisotropic paramagnetic systems, where large pseudocontact shifts can be observed, is evaluated through calculations of the magnitude of such shifts.
Biochemistry | 2013
Rustam Ali; Sanjeev Kumar; Hemalatha Balaram; Siddhartha P. Sarma
The solution structure of the monomeric glutamine amidotransferase (GATase) subunit of the Methanocaldococcus janaschii (Mj) guanosine monophosphate synthetase (GMPS) has been determined using high-resolution nuclear magnetic resonance methods. Gel filtration chromatography and ¹⁵N backbone relaxation studies have shown that the Mj GATase subunit is present in solution as a 21 kDa (188-residue) monomer. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35 ± 0.06 Å for backbone atoms and 0.8 ± 0.06 Å for all heavy atoms. Furthermore, 99.4% of the backbone dihedral angles are present in the allowed region of the Ramachandran map, indicating the stereochemical quality of the structure. The core of the tertiary structure of the GATase is composed of a seven-stranded mixed β-sheet that is fenced by five α-helices. The Mj GATase is similar in structure to the Pyrococcus horikoshi (Ph) GATase subunit. Nuclear magnetic resonance (NMR) chemical shift perturbations and changes in line width were monitored to identify residues on GATase that were responsible for interaction with magnesium and the ATPPase subunit, respectively. These interaction studies showed that a common surface exists for the metal ion binding as well as for the protein-protein interaction. The dissociation constant for the GATase-Mg(2+) interaction has been found to be ∼1 mM, which implies that interaction is very weak and falls in the fast chemical exchange regime. The GATase-ATPPase interaction, on the other hand, falls in the intermediate chemical exchange regime on the NMR time scale. The implication of this interaction in terms of the regulation of the GATase activity of holo GMPS is discussed.
Biochemistry | 2012
M.S. Shahul Hameed; Siddhartha P. Sarma
Protein-protein interactions are crucial for many biological functions. The redox interactome encompasses numerous weak transient interactions in which thioredoxin plays a central role. Proteomic studies have shown that thioredoxin binds to numerous proteins belonging to various cellular processes, including energy metabolism. Thioredoxin has cross talk with other redox mechanisms involving glutathionylation and has functional overlap with glutaredoxin in deglutathionylation reactions. In this study, we have explored the structural and biochemical interactions of thioredoxin with the glycolytic enzyme, triosephosphate isomerase. Nuclear magnetic resonance chemical shift mapping methods and molecular dynamics-based docking have been applied in deriving a structural model of the thioredoxin-triosephosphate isomerase complex. The spatial proximity of active site cysteine residues of thioredoxin to reactive thiol groups on triosephosphate isomerase provides a direct link to the observed deglutathionylation of cysteine 217 in triosephosphate isomerase, thereby reversing the inhibitory effect of S-glutathionylation of triosephosphate isomerase.
Collaboration
Dive into the Siddhartha P. Sarma's collaboration.
Jawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputs