Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sidong Huang is active.

Publication


Featured researches published by Sidong Huang.


Nature | 2012

Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR.

Anirudh Prahallad; Chong Sun; Sidong Huang; Federica Di Nicolantonio; Ramon Salazar; Davide Zecchin; Roderick L. Beijersbergen; Alberto Bardelli; René Bernards

Inhibition of the BRAF(V600E) oncoprotein by the small-molecule drug PLX4032 (vemurafenib) is highly effective in the treatment of melanoma. However, colon cancer patients harbouring the same BRAF(V600E) oncogenic lesion have poor prognosis and show only a very limited response to this drug. To investigate the cause of the limited therapeutic effect of PLX4032 in BRAF(V600E) mutant colon tumours, here we performed an RNA-interference-based genetic screen in human cells to search for kinases whose knockdown synergizes with BRAF(V600E) inhibition. We report that blockade of the epidermal growth factor receptor (EGFR) shows strong synergy with BRAF(V600E) inhibition. We find in multiple BRAF(V600E) mutant colon cancers that inhibition of EGFR by the antibody drug cetuximab or the small-molecule drugs gefitinib or erlotinib is strongly synergistic with BRAF(V600E) inhibition, both in vitro and in vivo. Mechanistically, we find that BRAF(V600E) inhibition causes a rapid feedback activation of EGFR, which supports continued proliferation in the presence of BRAF(V600E) inhibition. Melanoma cells express low levels of EGFR and are therefore not subject to this feedback activation. Consistent with this, we find that ectopic expression of EGFR in melanoma cells is sufficient to cause resistance to PLX4032. Our data suggest that BRAF(V600E) mutant colon cancers (approximately 8–10% of all colon cancers), for which there are currently no targeted treatment options available, might benefit from combination therapy consisting of BRAF and EGFR inhibitors.


Nature | 2014

Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma

Chong Sun; Liqin Wang; Sidong Huang; Guus J. J. E. Heynen; Anirudh Prahallad; Caroline Robert; John B. A. G. Haanen; Christian U. Blank; Jelle Wesseling; Stefan M. Willems; Davide Zecchin; Sebastijan Hobor; Prashanth Kumar Bajpe; Cor Lieftink; Christina Mateus; Stephan Vagner; Wipawadee Grernrum; Ingrid Hofland; Andreas Schlicker; Lodewyk F. A. Wessels; Roderick L. Beijersbergen; Alberto Bardelli; Federica Di Nicolantonio; Alexander Eggermont; René Bernards

Treatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors. Using a chromatin-regulator-focused short hairpin RNA (shRNA) library, we find that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes activation of TGF-β signalling, thus leading to upregulation of EGFR and platelet-derived growth factor receptor-β (PDGFRB), which confer resistance to BRAF and MEK inhibitors. Expression of EGFR in melanoma or treatment with TGF-β results in a slow-growth phenotype with cells displaying hallmarks of oncogene-induced senescence. However, EGFR expression or exposure to TGF-β becomes beneficial for proliferation in the presence of BRAF or MEK inhibitors. In a heterogeneous population of melanoma cells having varying levels of SOX10 suppression, cells with low SOX10 and consequently high EGFR expression are rapidly enriched in the presence of drug, but this is reversed when the drug treatment is discontinued. We find evidence for SOX10 loss and/or activation of TGF-β signalling in 4 of the 6 EGFR-positive drug-resistant melanoma patient samples. Our findings provide a rationale for why some BRAF or MEK inhibitor-resistant melanoma patients may regain sensitivity to these drugs after a ‘drug holiday’ and identify patients with EGFR-positive melanoma as a group that may benefit from re-treatment after a drug holiday.


Cell | 2012

MED12 Controls the Response to Multiple Cancer Drugs through Regulation of TGF-β Receptor Signaling

Sidong Huang; Michael Holzel; Theo Knijnenburg; Andreas Schlicker; Paul Roepman; Ultan McDermott; Mathew J. Garnett; Wipawadee Grernrum; Chong Sun; Anirudh Prahallad; Floris H. Groenendijk; Lorenza Mittempergher; Wouter Nijkamp; Jacques Neefjes; Ramon Salazar; Peter ten Dijke; Hidetaka Uramoto; Fumihiro Tanaka; Roderick L. Beijersbergen; Lodewyk F. A. Wessels; René Bernards

Inhibitors of the ALK and EGF receptor tyrosine kinases provoke dramatic but short-lived responses in lung cancers harboring EML4-ALK translocations or activating mutations of EGFR, respectively. We used a large-scale RNAi screen to identify MED12, a component of the transcriptional MEDIATOR complex that is mutated in cancers, as a determinant of response to ALK and EGFR inhibitors. MED12 is in part cytoplasmic where it negatively regulates TGF-βR2 through physical interaction. MED12 suppression therefore results in activation of TGF-βR signaling, which is both necessary and sufficient for drug resistance. TGF-β signaling causes MEK/ERK activation, and consequently MED12 suppression also confers resistance to MEK and BRAF inhibitors in other cancers. MED12 loss induces an EMT-like phenotype, which is associated with chemotherapy resistance in colon cancer patients and to gefitinib in lung cancer. Inhibition of TGF-βR signaling restores drug responsiveness in MED12(KD) cells, suggesting a strategy to treat drug-resistant tumors that have lost MED12.


Cell | 2010

NF1 Is a Tumor Suppressor in Neuroblastoma that Determines Retinoic Acid Response and Disease Outcome

Michael Holzel; Sidong Huang; Jan Koster; Ingrid Øra; Arjan Lakeman; Huib N. Caron; Wouter Nijkamp; Jing Xie; Tom Callens; Shahab Asgharzadeh; Robert C. Seeger; Ludwine Messiaen; Rogier Versteeg; René Bernards

Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.


Cell Reports | 2014

Intrinsic Resistance to MEK Inhibition in KRAS Mutant Lung and Colon Cancer through Transcriptional Induction of ERBB3

Chong Sun; Sebastijan Hobor; Andrea Bertotti; Davide Zecchin; Sidong Huang; Francesco Galimi; Francesca Cottino; Anirudh Prahallad; Wipawadee Grernrum; Anna Tzani; Andreas Schlicker; Lodewyk F. A. Wessels; Egbert F. Smit; Pasi Halonen; Cor Lieftink; Roderick L. Beijersbergen; Federica Di Nicolantonio; Alberto Bardelli; Livio Trusolino; René Bernards

There are no effective therapies for the ~30% of human malignancies with mutant RAS oncogenes. Using a kinome-centered synthetic lethality screen, we find that suppression of the ERBB3 receptor tyrosine kinase sensitizes KRAS mutant lung and colon cancer cells to MEK inhibitors. We show that MEK inhibition results in MYC-dependent transcriptional upregulation of ERBB3, which is responsible for intrinsic drug resistance. Drugs targeting both EGFR and ERBB2, each capable of forming heterodimers with ERBB3, can reverse unresponsiveness to MEK inhibition by decreasing inhibitory phosphorylation of the proapoptotic proteins BAD and BIM. Moreover, ERBB3 protein level is a biomarker of response to combinatorial treatment. These data suggest a combination strategy for treating KRAS mutant colon and lung cancers and a way to identify the tumors that are most likely to benefit from such combinatorial treatment.


Cancer Cell | 2009

ZNF423 Is Critically Required for Retinoic Acid-Induced Differentiation and Is a Marker of Neuroblastoma Outcome

Sidong Huang; Jamila Laoukili; Mirjam T. Epping; Jan Koster; Michael Holzel; Bart A. Westerman; Wouter Nijkamp; Akiko Hata; Shahab Asgharzadeh; Robert C. Seeger; Rogier Versteeg; Roderick L. Beijersbergen; René Bernards

Retinoids play key roles in differentiation, growth arrest, and apoptosis and are increasingly being used in the clinic for the treatment of a variety of cancers, including neuroblastoma. Here, using a large-scale RNA interference-based genetic screen, we identify ZNF423 (also known as Ebfaz, OAZ, or Zfp423) as a component critically required for retinoic acid (RA)-induced differentiation. ZNF423 associates with the RARalpha/RXRalpha nuclear receptor complex and is essential for transactivation in response to retinoids. Downregulation of ZNF423 expression by RNA interference in neuroblastoma cells results in a growth advantage and resistance to RA-induced differentiation, whereas overexpression of ZNF423 leads to growth inhibition and enhanced differentiation. Finally, we show that low ZNF423 expression is associated with poor disease outcome in neuroblastoma patients.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway

Matthias Drosten; Eleanor Y. M. Sum; Carmen G. Lechuga; Lucía Simón-Carrasco; Harrys K.C. Jacob; Raquel García-Medina; Sidong Huang; Roderick L. Beijersbergen; René Bernards; Mariano Barbacid

Significance In spite of the large number of biochemical studies contributing to the analysis of Ras-mediated cell cycle regulation, we do not know how Ras signaling controls the cell cycle. Here, we used an unbiased genetic approach to unveil essential components of Ras-mediated proliferation. Our results reveal that Ras signaling induces cell proliferation by a mechanism that requires inactivation of the p53/p21 Cdk-interacting protein 1 (Cip1) axis by preventing acetylation of specific p53 lysine residues. More importantly, loss of p53 or p21Cip1 can sustain cell proliferation in the absence of Ras proteins via Ras-independent activation of the Raf/Mek/Erk cascade. These results may have important implications for tumor growth and treatment, because activation of Ras oncogenes and inactivation of p53 are frequent events in human cancer. The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism.


Science Signaling | 2014

Dynamic Reprogramming of Signaling Upon Met Inhibition Reveals a Mechanism of Drug Resistance in Gastric Cancer

Andrea Z. Lai; Sean Cory; Hong Zhao; Mathieu Gigoux; Anie Monast; Marie-Christine Guiot; Sidong Huang; Ali Tofigh; Crista Thompson; Monica A. Naujokas; Victoria Marcus; Nicholas Bertos; Bita Sehat; Rushika Perera; Emily Bell; Brent D. G. Page; Patrick T. Gunning; Lorenzo E. Ferri; Michael Hallett; Morag Park

Understanding how inhibitors rewire the Met receptor pathway points to a strategy for more effective gastric cancer treatment. Met with Resistance in Gastric Cancer The hepatocyte growth factor receptor Met is associated with poor prognosis in various cancers, but the efficacy of Met inhibitors is often impeded by resistance. By comparing transcriptional changes at multiple time points after stimulation or inhibition of Met, Lai et al. identified critical mediators of Met-induced proliferation and Met inhibitor resistance in gastric cancer cell lines. Cancer cells or tumors exposed to Met inhibitors had decreased abundance of phosphatases, and this correlated with reactivation of the pro-proliferative MEK-ERK pathway and the emergence of drug resistance. Combining Met and MEK inhibitors was more cytotoxic to gastric cancer cells in culture than was either inhibitor alone, suggesting that this combination strategy may be effective in gastric cancer. The Met receptor tyrosine kinase is activated or genetically amplified in some gastric cancers, but resistance to small-molecule inhibitors of Met often emerges in patients. We found that Met abundance correlated with a proliferation marker in patient gastric tumor sections, and gastric cancer cell lines that have MET amplifications depended on Met for proliferation and anchorage-independent growth in culture. Inhibition of Met induced temporal changes in gene expression in the cell lines, initiated by a rapid decrease in the expression of genes encoding transcription factors, followed by those encoding proteins involved in epithelial-mesenchymal transition, and finally those encoding cell cycle–related proteins. In the gastric cancer cell lines, microarray and chromatin immunoprecipitation analysis revealed considerable overlap between genes regulated in response to Met stimulation and those regulated by signal transducer and activator of transcription 3 (STAT3). The activity of STAT3, extracellular signal–regulated kinase (ERK), and the kinase Akt was decreased by Met inhibition, but only inhibitors of STAT3 were as effective as the Met inhibitor in decreasing tumor cell proliferation in culture and in xenografts, suggesting that STAT3 mediates the pro-proliferative program induced by Met. However, the phosphorylation of ERK increased after prolonged Met inhibition in culture, correlating with decreased abundance of the phosphatases DUSP4 and DUSP6, which inhibit ERK. Combined inhibition of Met and the mitogen-activated protein kinase kinase (MEK)–ERK pathway induced greater cell death in cultured gastric cancer cells than did either inhibitor alone. These findings indicate combination therapies that may counteract resistance to Met inhibitors.


Cell Research | 2015

SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer

Andreas I. Papadakis; Chong Sun; Theo Knijnenburg; Yibo Xue; Wipawadee Grernrum; Michael Holzel; Wouter Nijkamp; Lodewyk F. A. Wessels; Roderick L. Beijersbergen; René Bernards; Sidong Huang

Recurrent inactivating mutations in components of SWI/SNF chromatin-remodeling complexes have been identified across cancer types, supporting their roles as tumor suppressors in modulating oncogenic signaling pathways. We report here that SMARCE1 loss induces EGFR expression and confers resistance to MET and ALK inhibitors in non-small cell lung cancers (NSCLCs). We found that SMARCE1 binds to regulatory regions of the EGFR locus and suppresses EGFR transcription in part through regulating expression of Polycomb Repressive Complex component CBX2. Addition of the EGFR inhibitor gefitinib restores the sensitivity of SMARCE1-knockdown cells to MET and ALK inhibitors in NSCLCs. Our findings link SMARCE1 to EGFR oncogenic signaling and suggest targeted treatment options for SMARCE1-deficient tumors.


PLOS Genetics | 2013

Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Drosophila melanogaster Neurofibromatosis-1 Growth Deficiency

James A. Walker; Jean Y. Gouzi; Jennifer B. Long; Sidong Huang; Robert C. Maher; Hongjing Xia; Kheyal Khalil; Arjun Ray; David Van Vactor; René Bernards; Andre Bernards

Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man.

Collaboration


Dive into the Sidong Huang's collaboration.

Top Co-Authors

Avatar

René Bernards

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Holzel

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wouter Nijkamp

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chong Sun

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Wipawadee Grernrum

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anirudh Prahallad

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge