Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sidong Lei is active.

Publication


Featured researches published by Sidong Lei.


Nature Materials | 2013

Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers

Sina Najmaei; Zheng Liu; Wu Zhou; Xiaolong Zou; Gang Shi; Sidong Lei; Boris I. Yakobson; Juan-Carlos Idrobo; Pulickel M. Ajayan; Jun Lou

Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.


Nature Materials | 2014

Vertical and in-plane heterostructures from WS2/MoS2 monolayers

Yongji Gong; Junhao Lin; Xingli Wang; Gang Shi; Sidong Lei; Zhong Lin; Xiaolong Zou; Gonglan Ye; Robert Vajtai; Boris I. Yakobson; Humberto Terrones; Mauricio Terrones; Beng Kang Tay; Jun Lou; Sokrates T. Pantelides; Zheng Liu; Wu Zhou; Pulickel M. Ajayan

Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconnected heterostructures of WS2/MoS2 via control of the growth temperature. Vertically stacked bilayers with WS2 epitaxially grown on top of the MoS2 monolayer are formed with preferred stacking order at high temperature. A strong interlayer excitonic transition is observed due to the type II band alignment and to the clean interface of these bilayers. Vapour growth at low temperature, on the other hand, leads to lateral epitaxy of WS2 on MoS2 edges, creating seamless and atomically sharp in-plane heterostructures that generate strong localized photoluminescence enhancement and intrinsic p-n junctions. The fabrication of heterostructures from monolayers, using simple and scalable growth, paves the way for the creation of unprecedented two-dimensional materials with exciting properties.


Small | 2013

Direct Laser‐Patterned Micro‐Supercapacitors from Paintable MoS2 Films

Liujun Cao; Shubin Yang; Wei Gao; Zheng Liu; Yongji Gong; Lulu Ma; Gang Shi; Sidong Lei; Yunhuai Zhang; Shengtao Zhang; Robert Vajtai; Pulickel M. Ajayan

Micrometer-sized electrochemical capacitors have recently attracted attention due to their possible applications in micro-electronic devices. Here, a new approach to large-scale fabrication of high-capacitance, two-dimensional MoS2 film-based micro-supercapacitors is demonstrated via simple and low-cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro-supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ∼0.45 μm. The optimum MoS2 -based micro-supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm(-2) (volumetric capacitance of 178 F cm(-3) ) and excellent cyclic performance, superior to reported graphene-based micro-supercapacitors. This strategy could provide a good opportunity to develop various micro-/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro-electronic devices.


Nano Letters | 2015

Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures

Yongji Gong; Sidong Lei; Gonglan Ye; Bo Li; Yongmin He; Kunttal Keyshar; Xiang Zhang; Qizhong Wang; Jun Lou; Zheng Liu; Robert Vajtai; Wu Zhou; Pulickel M. Ajayan

Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe2 was synthesized first and followed by an epitaxial growth of WSe2 on the edge and on the top surface of MoSe2. Compared to previously reported one-step growth methods, this two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 μm) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe2/MoSe2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe2/WSe2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe2/MoSe2 bilayer and the exposed MoSe2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency of 91% when functioning as a photodetector. A photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.


Nano Letters | 2013

Synthesis and photoresponse of large GaSe atomic layers.

Sidong Lei; Liehui Ge; Zheng Liu; Sina Najmaei; Gang Shi; Ge You; Jun Lou; Robert Vajtai; Pulickel M. Ajayan

We report the direct growth of large, atomically thin GaSe single crystals on insulating substrates by vapor phase mass transport. A correlation is identified between the number of layers and a Raman shift and intensity change. We found obvious contrast of the resistance of the material in the dark and when illuminated with visible light. In the photoconductivity measurement we observed a low dark current. The on-off ratio measured with a 405 nm at 0.5 mW/mm(2) light source is in the order of 10(3); the photoresponsivity is 17 mA/W, and the quantum efficiency is 5.2%, suggesting possibility for photodetector and sensor applications. The photocurrent spectrum of few-layer GaSe shows an intense blue shift of the excitation edge and expanded band gap compared with bulk material.


Nano Letters | 2015

Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application.

Guoxiong Su; Viktor G. Hadjiev; Phillip E. Loya; Jing Zhang; Sidong Lei; Surendra Maharjan; Pei Dong; Pulickel M. Ajayan; Jun Lou; Haibing Peng

Layered two-dimensional (2D) semiconductors, such as MoS(2) and SnS(2), have been receiving intensive attention due to their technological importance for the next-generation electronic/photonic applications. We report a novel approach to the controlled synthesis of thin crystal arrays of SnS(2) at predefined locations on chip by chemical vapor deposition with seed engineering and have demonstrated their application as fast photodetectors with photocurrent response time ∼ 5 μs. This opens a pathway for the large-scale production of layered 2D semiconductor devices, important for applications in integrated nanoelectronic/photonic systems.


Nano Letters | 2015

An Atomically Layered InSe Avalanche Photodetector

Sidong Lei; Fangfang Wen; Liehui Ge; Sina Najmaei; Antony George; Yongji Gong; Weilu Gao; Zehua Jin; Bo Li; Jun Lou; Junichiro Kono; Robert Vajtai; Pulickel M. Ajayan; Naomi J. Halas

Atomically thin photodetectors based on 2D materials have attracted great interest due to their potential as highly energy-efficient integrated devices. However, photoinduced carrier generation in these media is relatively poor due to low optical absorption, limiting device performance. Current methods for overcoming this problem, such as reducing contact resistances or back gating, tend to increase dark current and suffer slow response times. Here, we realize the avalanche effect in a 2D material-based photodetector and show that avalanche multiplication can greatly enhance the device response of an ultrathin InSe-based photodetector. This is achieved by exploiting the large Schottky barrier formed between InSe and Al electrodes, enabling the application of a large bias voltage. Plasmonic enhancement of the photosensitivity, achieved by patterning arrays of Al nanodisks onto the InSe layer, further improves device efficiency. With an external quantum efficiency approaching 866%, a dark current in the picoamp range, and a fast response time of 87 μs, this atomic layer device exhibits multiple significant advances in overall performance for this class of devices.


ACS Nano | 2015

Photoluminescence Quenching and Charge Transfer in Artificial Heterostacks of Monolayer Transition Metal Dichalcogenides and Few-Layer Black Phosphorus

Jiangtan Yuan; Sina Najmaei; Zhuhua Zhang; Jing Zhang; Sidong Lei; Pulickel M. Ajayan; Boris I. Yakobson; Jun Lou

Transition metal dichalcogenides monolayers and black phosphorus thin crystals are emerging two-dimensional materials that demonstrated extraordinary optoelectronic properties. Exotic properties and physics may arise when atomic layers of different materials are stacked together to form van der Waals solids. Understanding the important interlayer couplings in such heterostructures could provide avenues for control and creation of characteristics in these artificial stacks. Here we systematically investigate the optical and optoelectronic properties of artificial stacks of molybdenum disulfide, tungsten disulfide, and black phosphorus atomic layers. An anomalous photoluminescence quenching was observed in tungsten disulfide-molybdenum disulfide stacks. This was attributed to a direct to indirect band gap transition of tungsten disulfide in such stacks while molybdenum disulfide maintains its monolayer properties by first-principles calculations. On the other hand, due to the strong build-in electric fields in tungsten disulfide-black phosphorus or molybdenum disulfide-black phosphorus stacks, the excitons can be efficiently splitted despite both the component layers having a direct band gap in these stacks. We further examine optoelectronic properties of tungsten disulfide-molybdenum disulfide artificial stacks and demonstrate their great potentials in future optoelectronic applications.


Nano Letters | 2014

Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry

Sina Najmaei; Xiaolong Zou; Dequan Er; Junwen Li; Zehua Jin; Weilu Gao; Qi Zhang; Sooyoun Park; Liehui Ge; Sidong Lei; Junichiro Kono; Vivek B. Shenoy; Boris I. Yakobson; Antony George; Pulickel M. Ajayan; Jun Lou

We demonstrate how substrate interfacial chemistry can be utilized to tailor the physical properties of single-crystalline molybdenum disulfide (MoS2) atomic-layers. Semiconducting, two-dimensional MoS2 possesses unique properties that are promising for future optical and electrical applications for which the ability to tune its physical properties is essential. We use self-assembled monolayers with a variety of end termination chemistries to functionalize substrates and systematically study their influence on the physical properties of MoS2. Using electrical transport measurements, temperature-dependent photoluminescence spectroscopy, and empirical and first-principles calculations, we explore the possible mechanisms involved. Our data shows that combined interface-related effects of charge transfer, built-in molecular polarities, varied densities of defects, and remote interfacial phonons strongly modify the electrical and optical properties of MoS2. These findings can be used to effectively enhance or modulate the conductivity, field-effect mobility, and photoluminescence in MoS2 monolayers, illustrating an approach for local and universal property modulations in two-dimensional atomic-layers.


Nature Nanotechnology | 2016

Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes.

Xiaowei He; Weilu Gao; Lijuan Xie; Bo Li; Qi Zhang; Sidong Lei; John M. Robinson; Erik Haroz; Stephen K. Doorn; Weipeng Wang; Robert Vajtai; Pulickel M. Ajayan; W. Wade Adams; Robert H. Hauge; Junichiro Kono

The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm(2)) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 10(6) nanotubes in a cross-sectional area of 1 μm(2). The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.

Collaboration


Dive into the Sidong Lei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge