Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siegfried Eigler is active.

Publication


Featured researches published by Siegfried Eigler.


Angewandte Chemie | 2014

Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists

Siegfried Eigler; Andreas Hirsch

The chemical production of graphene as well as its controlled wet chemical modification is a challenge for synthetic chemists. Furthermore, the characterization of reaction products requires sophisticated analytical methods. In this Review we first describe the structure of graphene and graphene oxide and then outline the most important synthetic methods that are used for the production of these carbon-based nanomaterials. We summarize the state-of-the-art for their chemical functionalization by noncovalent and covalent approaches. We put special emphasis on the differentiation of the terms graphite, graphene, graphite oxide, and graphene oxide. An improved fundamental knowledge of the structure and the chemical properties of graphene and graphene oxide is an important prerequisite for the development of practical applications.


Advanced Materials | 2013

Wet Chemical Synthesis of Graphene

Siegfried Eigler; Michael Enzelberger-Heim; Stefan Grimm; Philipp Hofmann; Wolfgang Kroener; Andreas Geworski; Christoph Dotzer; Michael Röckert; Jie Xiao; Christian Papp; Ole Lytken; Hans-Peter Steinrück; Paul Müller; Andreas Hirsch

A suitable technology for the preparation of graphene based on versatile wet chemistry is presented for the first time. The protocol allows the wet chemical synthesis of graphene from a new form of graphene oxide that consists of an intact hexagonal σ-framework of C-atoms. Thus, it can be easily reduced to graphene that is no longer dominated by defects.


Journal of Physical Chemistry C | 2014

Statistical Raman Microscopy and Atomic Force Microscopy on Heterogeneous Graphene Obtained after Reduction of Graphene Oxide

Siegfried Eigler; Ferdinand Hof; Michael Enzelberger-Heim; Stefan Grimm; Paul Müller; Andreas Hirsch

Graphene oxide can be used as a precursor to graphene, but the quality of graphene flakes is highly heterogeneous. Scanning Raman microscopy (SRM) is used to characterize films of graphene derived from flakes of graphene oxide with an almost intact carbon framework (ai-GO). The defect density of these flakes is visualized in detail by analyzing the intensity and full width at half-maximum of the most pronounced Raman peaks. In addition, we superimpose the SRM results with AFM images and correlate the spectroscopic results with the morphology. Furthermore, we use the SRM technique to display the amount of defects in a film of graphene. Thus, an area of 250 × 250 μm2 of graphene is probed with a step-size increment of 1 μm. We are able to visualize the position of graphene flakes, edges and the substrate. Finally, we alter parameters of measurement to analyze the quality of graphene in a fast and reliable way. The described method can be used to probe and visualize the quality of graphene films.


Journal of Materials Chemistry | 2013

Graphene oxide: a stable carbon framework for functionalization

Siegfried Eigler; Stefan Grimm; Ferdinand Hof; Andreas Hirsch

The effect of NaOH and HCl on the stability of the carbon framework in graphene oxide (GO) after substitution or etherification reaction in GO is demonstrated at 10 °C and 40 °C, respectively. Our results allow the preparation of functionalized GO based architectures with an intact σ-framework of carbon atoms.


Journal of the American Chemical Society | 2013

New basic insight into reductive functionalization sequences of single walled carbon nanotubes (SWCNTs).

Ferdinand Hof; Sebastian Bosch; Siegfried Eigler; Frank Hauke; Andreas Hirsch

The reactivity of reduced single walled carbon nanotubes (SWCNTs) (carbon nanotubides), prepared under strict inert conditions in a glovebox with respect to the covalent functionalization with hexyl iodide and subsequent exposure to ambient conditions (air, moisture), was systematically investigated by Raman, absorption, fluorescence, and IR spectroscopy as well as by TG/MS measurements. We have discovered that the alkylation does not lead to a complete discharging of the tubes since follow-up reactions with moisture still take place leading to mixed functionalized carbon nanotube derivatives containing H- and OH-addends (but no carboxylates) next to the hexyl groups. This was confirmed by the exposure of carbon nanotubides to ambient conditions. The degree of hexylation determined both under strict inert (ic) and ambient (ac) conditions increases with an increasing K:C ratio of the reduced SWCNT starting material. The presence of OH-groups covalently attached to the nanotubes was also confirmed by postfunctionalization reactions with 2-thiophenecarbonyl chloride, leading to the corresponding esters. Control experiments with KO2 give rise to the formation of the same oxygen functionalities. These combined findings allowed for the suggestions of a plausible reaction mechanism, describing all the observed reactions on the SWCNTs side walls. The amount of subsequent side reactions after the treatment of reduced SWCNTs with electrophiles is strongly influenced by the reduction potential of the electrophile, which is responsible for the extent of reoxidation. Incomplete quenching of negative charges allows stronger oxidants/electrophile (e.g., O2) to perform follow-up reactions.


Nanoscale | 2013

Controlled functionalization of graphene oxide with sodium azide.

Siegfried Eigler; Yichen Hu; Yoshitaka Ishii; Andreas Hirsch

We present the first example of azide functionalization on the surface of graphene oxide (GO), which preserves thermally unstable groups in GO through the mild reaction with sodium azide in solids. Experimental evidence, by (15)N solid-state NMR and other spectroscopic methods, indicates the substitution of organosulfate with azide anions as the reaction mechanism.


Journal of the American Chemical Society | 2016

Graphene Oxide: A One- versus Two-Component Material

Anton Naumov; Fabian Grote; Marc H. Overgaard; Alexandra Roth; Christian E. Halbig; Kasper Nørgaard; Dirk M. Guldi; Siegfried Eigler

The structure of graphene oxide (GO) is a matter of discussion. While established GO models are based on functional groups attached to the carbon framework, another frequently used model claims that GO consists of two components, a slightly oxidized graphene core and highly oxidized molecular species, oxidative debris (OD), adsorbed on it. Those adsorbents are claimed to be the origin for optical properties of GO. Here, we examine this model by preparing GO with a low degree of functionalization, combining it with OD and studying the optical properties of both components and their combination in an artificial two-component system. The analyses of absorption and emission spectra as well as lifetime measurements reveal that properties of the combined system are distinctly different from those of GO. That confirms structural models of GO as a separate oxygenated hexagonal carbon framework with optical properties governed by its internal structure rather than the presence of OD. Understanding the structure of GO allows further reliable interpretation of its optical and electronic properties and enables controlled processing of GO.


Chemistry: A European Journal | 2016

Controlled Chemistry Approach to the Oxo-Functionalization of Graphene.

Siegfried Eigler

Graphene is the best-studied 2D material available. However, its production is still challenging and the quality depends on the preparation procedure. Now, more than a decade after the outstanding experiments conducted on graphene, the most successful wet-chemical approach to graphene and functionalized graphene is based on the oxidation of graphite. Graphene oxide has been known for more than a century; however, the structure bears variable large amounts of lattice defects that render the development of a controlled chemistry impossible. The controlled oxo-functionalization of graphene avoids the formation of defects within the σ-framework of carbon atoms, making the synthesis of specific molecular architectures possible. The scope of this review is to introduce the field of oxo-functionalizing graphene. In particular, the differences between GO and oxo-functionalized graphene are described in detail. Moreover analytical methods that allow determining lattice defects and functional groups are introduced followed by summarizing the current state of controlled oxo-functionalization of graphene.


Small | 2015

Determination of the Lateral Dimension of Graphene Oxide Nanosheets Using Analytical Ultracentrifugation

Johannes Walter; Thomas J. Nacken; Cornelia Damm; Thaseem Thajudeen; Siegfried Eigler; Wolfgang Peukert

In this paper, a method to determine the lateral dimensions of 2D nanosheets directly in suspension by analytical ultracentrifugation (AUC) is shown. The basis for this study is a well-characterized and stable dispersion of graphene oxide (GO) monolayers in water. A methodology is developed to correlate the sedimentation coefficient distribution measured by AUC with the lateral size distribution of the 2D GO nanosheets obtained from atomic force microscopy (AFM). A very high accuracy can be obtained by virtue of counting several thousand sheets, thereby minimizing any coating effects or statistical uncertainties. The AFM statistics are further used to fit the lateral size distribution obtained from the AUC to determine the unknown hydrodynamic sheet thickness or density. It is found that AUC can derive nanosheet diameter distributions with a relative error of the mean sheet diameter of just 0.25% as compared to the AFM analysis for 90 mass% of the particles in the distribution. The standard deviation of the size-dependent error for the total distribution is found to be 3.25%. Based on these considerations, an expression is given to calculate the cut size of 2D nanosheets in preparative centrifugation experiments.


Journal of Materials Chemistry | 2016

Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design

Haiwei Chen; Yi Hou; Christian E. Halbig; Shi Chen; Hong Zhang; Ning Li; Fei Guo; Xiaofeng Tang; Nicola Gasparini; Ievgen Levchuk; Simon Kahmann; Cesar Omar Ramirez Quiroz; Andres Osvet; Siegfried Eigler; Christoph J. Brabec

Solution-processed oxo-functionalized graphene (oxo-G1) is employed to substitute hydrophilic PEDOT:PSS as an anode interfacial layer for perovskite solar cells. The resulting devices exhibit a reasonably high power conversion efficiency (PCE) of 15.2% in the planar inverted architecture with oxo-G1 as a hole transporting material (HTM), and most importantly, deploy the full open-circuit voltage (Voc) of up to 1.1 V. Moreover, oxo-G1 effectively slows down the ingress of water vapor into the device stack resulting in significantly enhanced environmental stability of unpackaged cells under illumination with 80% of the initial PCE being reached after 500 h. Without encapsulation, ∼60% of the initial PCE is retained after ∼1000 h of light soaking under 0.5 sun and ambient conditions maintaining the temperature beneath 30 °C. Moreover, the unsealed perovskite device retains 92% of its initial PCE after about 1900 h under ambient conditions and in the dark. Our results underpin that controlling water diffusion into perovskite cells through advanced interface engineering is a crucial step towards prolonged environmental stability.

Collaboration


Dive into the Siegfried Eigler's collaboration.

Top Co-Authors

Avatar

Andreas Hirsch

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christian E. Halbig

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Stefan Grimm

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Axel Kahnt

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Dotzer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Cornelia Damm

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Fabian Grote

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Felix Börrnert

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ferdinand Hof

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge