Siegfried Hapfelmeier
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siegfried Hapfelmeier.
Infection and Immunity | 2003
Manja Barthel; Siegfried Hapfelmeier; Leticia Quintanilla-Martinez; Marcus Kremer; Manfred Rohde; Michael Hogardt; Klaus Pfeffer; Holger Rüssmann; Wolf-Dietrich Hardt
ABSTRACT Salmonella enterica subspecies 1 serovar Typhimurium is a principal cause of human enterocolitis. For unknown reasons, in mice serovar Typhimurium does not provoke intestinal inflammation but rather targets the gut-associated lymphatic tissues and causes a systemic typhoid-like infection. The lack of a suitable murine model has limited the analysis of the pathogenetic mechanisms of intestinal salmonellosis. We describe here how streptomycin-pretreated mice provide a mouse model for serovar Typhimurium colitis. Serovar Typhimurium colitis in streptomycin-pretreated mice resembles many aspects of the human infection, including epithelial ulceration, edema, induction of intercellular adhesion molecule 1, and massive infiltration of PMN/CD18+ cells. This pathology is strongly dependent on protein translocation via the serovar Typhimurium SPI1 type III secretion system. Using a lymphotoxin β-receptor knockout mouse strain that lacks all lymph nodes and organized gut-associated lymphatic tissues, we demonstrate that Peyers patches and mesenteric lymph nodes are dispensable for the initiation of murine serovar Typhimurium colitis. Our results demonstrate that streptomycin-pretreated mice offer a unique infection model that allows for the first time to use mutants of both the pathogen and the host to study the molecular mechanisms of enteric salmonellosis.
Immunity | 2011
Markus B. Geuking; Julia Cahenzli; Melissa A.E. Lawson; Derek C.K. Ng; Emma Slack; Siegfried Hapfelmeier; Kathy D. McCoy; Andrew J. Macpherson
Mammals harbor a dense commensal microbiota in the colon. Regulatory T (Treg) cells are known to limit microbe-triggered intestinal inflammation and the CD4+ T cell compartment is shaped by the presence of particular microbes or bacterial compounds. It is, however, difficult to distinguish whether these effects reflect true mutualistic immune adaptation to intestinal colonization or rather idiosyncratic immune responses. To investigate truly mutualistic CD4+ T cell adaptation, we used the altered Schaedler flora (ASF). Intestinal colonization resulted in activation and de novo generation of colonic Treg cells. Failure to activate Treg cells resulted in the induction of T helper 17 (Th17) and Th1 cell responses, which was reversed by wild-type Treg cells. Efficient Treg cell induction was also required to maintain intestinal homeostasis upon dextran sulfate sodium-mediated damage in the colon. Thus, microbiota colonization-induced Treg cell responses are a fundamental intrinsic mechanism to induce and maintain host-intestinal microbial T cell mutualism.
Science | 2010
Siegfried Hapfelmeier; Melissa A.E. Lawson; Emma Slack; Jorum Kirundi; Maaike Stoel; Mathias Heikenwalder; Julia Cahenzli; Yuliya Velykoredko; Maria L. Balmer; Kathrin Endt; Markus B. Geuking; rd Roy Curtiss; Kathy D. McCoy; Andrew J. Macpherson
A Gut Feeling The mammalian gut is colonized by many nonpathogenic, commensal microbes. In order to prevent the body from mounting inappropriate immune responses to these microbes, plasma cells in the gut produce large amounts of immunoglobulin A (IgA) specific for commensal bacteria. Because of the difficulties of uncoupling IgA production from microbial colonization, how commensal bacteria shape the gut IgA response is not well understood. Hapfelmeier et al. (p. 1705; see the Perspective by Cerutti) have now devised a way to get around this problem by developing a reversible system of gut bacterial colonization in mice. Commensal-specific IgA responses were able to persist for long periods of time in the absence of microbial colonization and required the presence of high microbial loads in the gut for their induction. IgA responses upon bacterial reexposure did not resemble the synergistic prime-boost effect seen in classical immunological memory responses but rather exhibited an additive effect that matched the current bacterial content present in the gut. The body thus constantly adapts the commensal-specific immune response to the microbial species present in the gut, which contrasts with the systemic immune response, which persists in the absence of pathogenic microbes. Immunoglobulin responses against nonpathogenic bacteria in the gut are specific for the resident microbial flora. The lower intestine of adult mammals is densely colonized with nonpathogenic (commensal) microbes. Gut bacteria induce protective immune responses, which ensure host-microbial mutualism. The continuous presence of commensal intestinal bacteria has made it difficult to study mucosal immune dynamics. Here, we report a reversible germ-free colonization system in mice that is independent of diet or antibiotic manipulation. A slow (more than 14 days) onset of a long-lived (half-life over 16 weeks), highly specific anticommensal immunoglobulin A (IgA) response in germ-free mice was observed. Ongoing commensal exposure in colonized mice rapidly abrogated this response. Sequential doses lacked a classical prime-boost effect seen in systemic vaccination, but specific IgA induction occurred as a stepwise response to current bacterial exposure, such that the antibody repertoire matched the existing commensal content.
Science | 2009
Emma Slack; Siegfried Hapfelmeier; Bärbel Stecher; Yuliya Velykoredko; Maaike Stoel; Melissa A.E. Lawson; Markus B. Geuking; Bruce Beutler; Thomas F. Tedder; Wolf-Dietrich Hardt; Premysl Bercik; Elena F. Verdu; Kathy D. McCoy; Andrew J. Macpherson
Maintaining Mutual Ignorance Our gut is colonized by trillions of bacteria that do not activate the immune system because of careful compartmentalization. Such compartmentalization means that our immune system is “ignorant” of these microbes and thus it has been proposed that loss of compartmentalization might result in an immune response to the colonizing bacteria. Microorganisms are sensed by cells that express pattern recognition receptors, such as Toll-like receptors, which recognize patterns specific to those microbes. Slack et al. (p. 617) show that Toll-like receptor–dependent signaling is required to maintain compartmentalization of bacteria to the gut of mice. In the absence of Toll-dependent signaling, intestinal bacteria disseminated throughout the body and the mice mounted a high-titer antibody response against them. This antibody response was of great functional importance because, despite the loss of systemic ignorance to intestinal microbes, the mice were tolerant of the bacteria. Thus, in the absence of innate immunity, the adaptive immune system can compensate so that host and bacterial mutualism can be maintained. Mouse immune systems interact to ensure tolerance to nonpathogenic bacteria in the gut. Commensal bacteria in the lower intestine of mammals are 10 times as numerous as the body’s cells. We investigated the relative importance of different immune mechanisms in limiting the spread of the intestinal microbiota. Here, we reveal a flexible continuum between innate and adaptive immune function in containing commensal microbes. Mice deficient in critical innate immune functions such as Toll-like receptor signaling or oxidative burst production spontaneously produce high-titer serum antibodies against their commensal microbiota. These antibody responses are functionally essential to maintain host-commensal mutualism in vivo in the face of innate immune deficiency. Spontaneous hyper-activation of adaptive immunity against the intestinal microbiota, secondary to innate immune deficiency, may clarify the underlying mechanisms of inflammatory diseases where immune dysfunction is implicated.
Journal of Immunology | 2005
Siegfried Hapfelmeier; Bärbel Stecher; Manja Barthel; Marcus Kremer; Andreas Müller; Mathias Heikenwalder; Thomas Stallmach; Michael Hensel; Klaus Pfeffer; Shizuo Akira; Wolf-Dietrich Hardt
Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88−/− animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; ΔinvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.
PLOS Pathogens | 2010
Bärbel Stecher; Samuel Chaffron; Rina Käppeli; Siegfried Hapfelmeier; Susanne Freedrich; Thomas Weber; Jorum Kirundi; Mrutyunjay Suar; Kathy D. McCoy; Christian von Mering; Andrew J. Macpherson; Wolf-Dietrich Hardt
The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCMcon21). 16S rRNA sequence analysis comparing LCM, LCMcon21 and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri RR strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria.
Infection and Immunity | 2004
Bärbel Stecher; Siegfried Hapfelmeier; Catherine Müller; Marcus Kremer; Thomas Stallmach; Wolf-Dietrich Hardt
ABSTRACT Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of gastrointestinal infections. The hosts innate immune system and a complex set of Salmonella virulence factors are thought to contribute to enteric disease. The serovar Typhimurium virulence factors have been studied extensively by using tissue culture assays, and bovine infection models have been used to verify the role of these factors in enterocolitis. Streptomycin-pretreated mice provide an alternative animal model to study enteric salmonellosis. In this model, the Salmonella pathogenicity island 1 type III secretion system has a key virulence function. Nothing is known about the role of other virulence factors. We investigated the role of flagella in murine serovar Typhimurium colitis. A nonflagellated serovar Typhimurium mutant (fliGHI) efficiently colonized the intestine but caused little colitis during the early phase of infection (10 and 24 h postinfection). In competition assays with differentially labeled strains, the fliGHI mutant had a reduced capacity to get near the intestinal epithelium, as determined by fluorescence microscopy. A flagellated but nonchemotactic cheY mutant had the same virulence defects as the fliGHI mutant for causing colitis. In competitive infections, both mutants colonized the intestine of streptomycin-pretreated mice by day 1 postinfection but were outcompeted by the wild-type strain by day 3 postinfection. Together, these data demonstrate that flagella are required for efficient colonization and induction of colitis in streptomycin-pretreated mice. This effect is mostly attributable to chemotaxis. Recognition of flagellar subunits (i.e., flagellin) by innate immune receptors (i.e., Toll-like receptor 5) may be less important.
Infection and Immunity | 2004
Siegfried Hapfelmeier; Kristin Ehrbar; Bärbel Stecher; Manja Barthel; Marcus Kremer; Wolf-Dietrich Hardt
ABSTRACT Salmonella enterica subspecies 1 serovar Typhimurium (serovar Typhimurium) induces enterocolitis in humans and cattle. The mechanisms of enteric salmonellosis have been studied most extensively in calf infection models. The previous studies established that effector protein translocation into host cells via the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (TTSS) is of central importance in serovar Typhimurium enterocolitis. We recently found that orally streptomycin-pretreated mice provide an alternative model for serovar Typhimurium colitis. In this model the SPI-1 TTSS also plays a key role in the elicitation of intestinal inflammation. However, whether intestinal inflammation in calves and intestinal inflammation in streptomycin-pretreated mice are induced by the same SPI-1 effector proteins is still unclear. Therefore, we analyzed the role of the SPI-1 effector proteins SopB/SigD, SopE, SopE2, and SipA/SspA in elicitation of intestinal inflammation in the murine model. We found that sipA, sopE, and, to a lesser degree, sopE2 contribute to murine colitis, but we could not assign an inflammation phenotype to sopB. These findings are in line with previous studies performed with orally infected calves. Extending these observations, we demonstrated that in addition to SipA, SopE and SopE2 can induce intestinal inflammation independent of each other and in the absence of SopB. In conclusion, our data corroborate the finding that streptomycin-pretreated mice provide a useful model for studying the molecular mechanisms of serovar Typhimurium colitis and are an important starting point for analysis of the molecular events triggered by SopE, SopE2, and SipA in vivo.
Science Translational Medicine | 2014
Maria L. Balmer; Emma Slack; Andrea De Gottardi; Melissa Lawson; Siegfried Hapfelmeier; Luca Miele; Antonio Grieco; Hans Van Vlierberghe; René Fahrner; Nicola Patuto; Christine Bernsmeier; Francesca Ronchi; Madeleine Wyss; Deborah Stroka; Nina Dickgreber; Markus H. Heim; Kathy D. McCoy; Andrew J. Macpherson
The liver forms a firewall that protects against vascular-borne gut microbes and is commonly impaired in liver disease. Breaching Barriers Premature death from chronic liver disease is a rising global trend. Opportunistic bacterial infections caused by beneficial microbes that have breached the gut and its immune barrier often lead to death in liver cirrhosis patients. Balmer et al. now show that the liver forms a second vascular barrier for eliminating commensal bacteria that have escaped from the gut. In animal models of liver disease and gut dysfunction and in patients with nonalcoholic steatohepatitis, the liver is unable to capture escaped gut commensal bacteria, which then leak into the systemic circulation, resulting in a robust host nonmucosal immune response and the breakdown of mutualism between the host and its gut microbiota. Mutualism breakdown is an important complication of liver disease. A prerequisite for establishment of mutualism between the host and the microbial community that inhabits the large intestine is the stringent mucosal compartmentalization of microorganisms. Microbe-loaded dendritic cells trafficking through lymphatics are arrested at the mesenteric lymph nodes, which constitute the firewall of the intestinal lymphatic circulation. We show in different mouse models that the liver, which receives the intestinal venous blood circulation, forms a vascular firewall that captures gut commensal bacteria entering the bloodstream during intestinal pathology. Phagocytic Kupffer cells in the liver of mice clear commensals from the systemic vasculature independently of the spleen through the liver’s own arterial supply. Damage to the liver firewall in mice impairs functional clearance of commensals from blood, despite heightened innate immunity, resulting in spontaneous priming of nonmucosal immune responses through increased systemic exposure to gut commensals. Systemic immune responses consistent with increased extraintestinal commensal exposure were found in humans with liver disease (nonalcoholic steatohepatitis). The liver may act as a functional vascular firewall that clears commensals that have penetrated either intestinal or systemic vascular circuits.
Journal of Experimental Medicine | 2008
Siegfried Hapfelmeier; Andreas Müller; Bärbel Stecher; Patrick Kaiser; Manja Barthel; Kathrin Endt; Matthias Eberhard; Riccardo Robbiani; Christoph A Jacobi; Mathias Heikenwalder; Carsten J. Kirschning; Steffen Jung; Thomas Stallmach; Marcus Kremer; Wolf-Dietrich Hardt
Intestinal dendritic cells (DCs) are believed to sample and present commensal bacteria to the gut-associated immune system to maintain immune homeostasis. How antigen sampling pathways handle intestinal pathogens remains elusive. We present a murine colitogenic Salmonella infection model that is highly dependent on DCs. Conditional DC depletion experiments revealed that intestinal virulence of S. Typhimurium SL1344 ΔinvG mutant lacking a functional type 3 secretion system-1 (ΔinvG)critically required DCs for invasion across the epithelium. The DC-dependency was limited to the early phase of infection when bacteria colocalized with CD11c+CX3CR1+ mucosal DCs. At later stages, the bacteria became associated with other (CD11c−CX3CR1−) lamina propria cells, DC depletion no longer attenuated the pathology, and a MyD88-dependent mucosal inflammation was initiated. Using bone marrow chimeric mice, we showed that the MyD88 signaling within hematopoietic cells, which are distinct from DCs, was required and sufficient for induction of the colitis. Moreover, MyD88-deficient DCs supported transepithelial uptake of the bacteria and the induction of MyD88-dependent colitis. These results establish that pathogen sampling by DCs is a discrete, and MyD88-independent, step during the initiation of a mucosal innate immune response to bacterial infection in vivo.