Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sierd Bron is active.

Publication


Featured researches published by Sierd Bron.


Microbiology and Molecular Biology Reviews | 2004

Proteomics of Protein Secretion by Bacillus subtilis: Separating the “Secrets” of the Secretome

Harold Tjalsma; Haike Antelmann; Jan Jongbloed; Peter Braun; Elise Darmon; Ronald Dorenbos; Jean-Yves F. Dubois; Helga Westers; Geeske Zanen; Wim J. Quax; Oscar P. Kuipers; Sierd Bron; Michael Hecker; Jm van Dijl

SUMMARY Secretory proteins perform a variety of important“ remote-control” functions for bacterial survival in the environment. The availability of complete genome sequences has allowed us to make predictions about the composition of bacterial machinery for protein secretion as well as the extracellular complement of bacterial proteomes. Recently, the power of proteomics was successfully employed to evaluate genome-based models of these so-called secretomes. Progress in this field is well illustrated by the proteomic analysis of protein secretion by the gram-positive bacterium Bacillus subtilis, for which ∼90 extracellular proteins were identified. Analysis of these proteins disclosed various“ secrets of the secretome,” such as the residence of cytoplasmic and predicted cell envelope proteins in the extracellular proteome. This showed that genome-based predictions reflect only∼ 50% of the actual composition of the extracellular proteome of B. subtilis. Importantly, proteomics allowed the first verification of the impact of individual secretion machinery components on the total flow of proteins from the cytoplasm to the extracellular environment. In conclusion, proteomics has yielded a variety of novel leads for the analysis of protein traffic in B. subtilis and other gram-positive bacteria. Ultimately, such leads will serve to increase our understanding of virulence factor biogenesis in gram-positive pathogens, which is likely to be of high medical relevance.


The EMBO Journal | 1992

SIGNAL PEPTIDASE-I OF BACILLUS-SUBTILIS : PATTERNS OF CONSERVED AMINO-ACIDS IN PROKARYOTIC AND EUKARYOTIC TYPE-I SIGNAL PEPTIDASES

J M van Dijl; A de Jong; Jari Vehmaanperä; G Venema; Sierd Bron

Signal peptidases (SPases) remove signal peptides from secretory proteins. The sipS (signal peptidase of subtilis) gene, which encodes an SPase of Bacillus subtilis, was cloned in Escherichia coli and was also found to be active in E.coli. Its overproduction in B.subtilis resulted in increased rates of processing of a hybrid beta‐lactamase precursor. The SipS protein consisted of 184 amino acids (mol. wt 21 kDa). The protein showed sequence similarity with the leader peptidases of E.coli and Salmonella typhimurium, and the mitochondrial inner membrane protease I of Saccharomyces cerevisiae. Patterns of conserved amino acids present in these four proteins were also detected in the Sec11 subunit of the SPase complex of S.cerevisiae and the 18 and 21 kDa subunits of the canine SPase complex. Knowledge of the sequence of SipS was essential for the detection of these similarities between prokaryotic and eukaryotic SPases. The data suggest that these proteins, which have analogous functions, belong to one class of enzymes, the type I SPases.


Journal of Biological Chemistry | 1998

SecDF of Bacillus subtilis, a Molecular Siamese Twin Required for the Efficient Secretion of Proteins

Albert Bolhuis; Alexei Sorokin; Ml van Roosmalen; G Venema; Sierd Bron; Wim J. Quax; J.M van Dijl

In the present studies, we show that the SecD and SecF equivalents of the Gram-positive bacterium Bacillus subtilis are jointly present in one polypeptide, denoted SecDF, that is required to maintain a high capacity for protein secretion. Unlike the SecD subunit of the pre-protein translocase ofEscherichia coli, SecDF of B. subtilis was not required for the release of a mature secretory protein from the membrane, indicating that SecDF is involved in earlier translocation steps. Strains lacking intact SecDF showed a cold-sensitive phenotype, which was exacerbated by high level production of secretory proteins, indicating that protein translocation in B. subtilis is intrinsically cold-sensitive. Comparison with SecD and SecF proteins from other organisms revealed the presence of 10 conserved regions in SecDF, some of which appear to be important for SecDF function. Interestingly, the SecDF protein of B. subtilis has 12 putative transmembrane domains. Thus, SecDF does not only show sequence similarity but also structural similarity to secondary solute transporters. Our data suggest that SecDF of B. subtilisrepresents a novel type of the SecD and SecF proteins, which seems to be present in at least two other organisms.


Journal of Biological Chemistry | 1999

Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Bacillus subtilis

Albert Bolhuis; G Venema; Wim J. Quax; Sierd Bron; van Jan Maarten Dijl

The in vivo formation of disulfide bonds, which is critical for the stability and/or activity of many proteins, is catalyzed by thiol-disulfide oxidoreductases. In the present studies, we show that the Gram-positive eubacteriumBacillus subtilis contains three genes, denotedbdbA, bdbB, and bdbC, for thiol-disulfide oxidoreductases. Escherichia coli alkaline phosphatase, containing two disulfide bonds, was unstable when secreted by B. subtilis cells lacking BdbB or BdbC, and notably, the expression levels of bdbB and bdbC appeared to set a limit for the secretion of active alkaline phosphatase. Cells lacking BdbC also showed decreased stability of cell-associated forms of E. coli TEM-β-lactamase, containing one disulfide bond. In contrast, BdbA was not required for the stability of alkaline phosphatase or β-lactamase. Because BdbB and BdbC are typical membrane proteins, our findings suggest that they promote protein folding at the membrane-cell wall interface. Interestingly, pre-β-lactamase processing to its mature form was stimulated in cells lacking BdbC, suggesting that the unfolded form of this precursor is a preferred substrate for signal peptidase. Surprisingly, cells lacking BdbC did not develop competence for DNA uptake, indicating the involvement of disulfide bond-containing proteins in this process. Unlike E. coli and yeast, none of the thiol-disulfide oxidoreductases of B. subtilis was required for growth in the presence of reducing agents. In conclusion, our observations indicate that BdbB and BdbC have a general role in disulfide bond formation, whereas BdbA may be dedicated to a specific process.


Journal of Biotechnology | 1998

Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli

Sierd Bron; Albert Bolhuis; Harold Tjalsma; Siger Holsappel; G Venema; van Jan Maarten Dijl

Bacillus subtilis is one of the best known Gram-positive bacteria at both the genetic and physiological level. The entire sequence of its chromosome is known and efficient tools for the genetic modification of this bacterium are available. Moreover, B. subtilis and related Bacillus species are widely used in biotechnology, in particular for the production of secreted enzymes. Although bacilli can secrete large amounts of several native enzymes, the use of these bacteria for the production of heterologous enzymes has frequently resulted in low yields. Here we describe the identification of several components of the Bacillus protein secretion machinery. These components can now be engineered for optimal protein secretion. Special emphasis is given on type I signal peptidases, which remove signal peptides from secretory precursor proteins. Five genes specifying such enzymes (sip, for signal peptidase) are present on the B. subtilis chromosome. Although none of the sip genes is essential by itself, a specific combination of mutations in these genes is lethal. The expression pattern of some of the sip genes coincides with that of many secretory proteins, which seems to reflect an adaptation to high demands on the secretion machinery. Although the various B. subtilis type I signal peptidases have at least partially overlapping substrate specificities, clear differences in substrate preferences are also evident. These observations have implications for the engineering of the processing apparatus for improved secretion of native and heterologous proteins by Bacillus.


Journal of Biological Chemistry | 1999

Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins

Albert Bolhuis; A Matzen; H.-L Hyyryläinen; V.P Kontinen; Rob Meima; Jérôme Chapuis; G Venema; Sierd Bron; R Freudl; van Jan Maarten Dijl

Signal peptides direct the export of secretory proteins from the cytoplasm. After processing by signal peptidase, they are degraded in the membrane and cytoplasm. The resulting fragments can have signaling functions. These observations suggest important roles for signal peptide peptidases. The present studies show that the Gram-positive eubacterium Bacillus subtilis contains two genes for proteins, denoted SppA and TepA, with similarity to the signal peptide peptidase A of Escherichia coli. Notably, TepA also shows similarity to ClpP proteases. SppA of B. subtilis was only required for efficient processing of pre-proteins under conditions of hyper-secretion. In contrast, TepA depletion had a strong effect on pre-protein translocation across the membrane and subsequent processing, not only under conditions of hyper-secretion. Unlike SppA, which is a typical membrane protein, TepA appears to have a cytosolic localization, which is consistent with the observation that TepA is involved in early stages of the secretion process. Our observations demonstrate that SppA and TepA have a role in protein secretion in B. subtilis. Based on their similarity to known proteases, it seems likely that SppA and TepA are specifically required for the degradation of proteins or (signal) peptides that are inhibitory to protein translocation.


Molecular Genetics and Genomics | 1991

Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli.

van Jan Maarten Dijl; A de Jong; Sierd Bron; G Venema

SummaryThe effects of 25-fold overproduction ofEscherichia coli signal peptidase I (SPase I) on the processing kinetics of various (hybrid) secretory proteins, comprising fusions between signal sequence functions selected from theBacillus subtilis chromosome and the mature part of TEM-β-lactamase, were studied inE. coli. One precursor (pre[A2d]-β-lactamase) showed an enhanced processing rate, and consequently, a highly improved release of the mature enzyme into the periplasm. A minor fraction of a second hybrid precursor (pre[Al3i]-β-lactamase), which was not processed under standard conditions of SPase I synthesis, was shown to be processed under conditions of SPase I overproduction. However, this did not result in efficient release of the mature β-lactamase into the periplasm. In contrast, the processing rates of wild-type pre-β-lactamase and pre(A2)-β-lactamase, already high under standard conditions, were not detectably altered by SPase I overproduction. These results demonstrate that the availability of SPase I can be a limiting factor in protein export inE. coli, in particular with respect to (hybrid) precursor proteins showing low (SPase I) processing efficiencies.


Journal of Biological Chemistry | 2000

Conserved Serine and Histidine Residues Are Critical for Activity of the ER-type Signal Peptidase SipW of Bacillus subtilis

Harold Tjalsma; Axel G. Stöver; Adam Driks; Gerard Venema; Sierd Bron; Jan Maarten van Dijl

Type I signal peptidases (SPases) are required for the removal of signal peptides from translocated proteins and, subsequently, release of the mature protein from the transside of the membrane. Interestingly, prokaryotic (P-type) and endoplasmic reticular (ER-type) SPases are functionally equivalent, but structurally quite different, forming two distinct SPase families that share only few conserved residues. P-type SPases were, so far, exclusively identified in eubacteria and organelles, whereas ER-type SPases were found in the three kingdoms of life. Strikingly, the presence of ER-type SPases appears to be limited to sporulating Gram-positive eubacteria. The present studies were aimed at the identification of potential active site residues of the ER-type SPase SipW of Bacillus subtilis, which is required for processing of the spore-associated protein TasA. Conserved serine, histidine, and aspartic acid residues are critical for SipW activity, suggesting that the ER-type SPases employ a Ser-His-Asp catalytic triad or, alternatively, a Ser-His catalytic dyad. In contrast, the P-type SPases employ a Ser-Lys catalytic dyad (Paetzel, M., Dalbey, R. E., and Strynadka, N. C. J. (1998) Nature 396, 186–190). Notably, catalytic activity of SipW was not only essential for pre-TasA processing, but also for the incorporation of mature TasA into spores.


Journal of Biological Chemistry | 1999

The potential active site of the lipoprotein-specific (type II) signal peptidase of Bacillus subtilis

H Tjalsma; G.E Zanen; G Venema; Sierd Bron; van Jan Maarten Dijl

Type II signal peptidases (SPase II) remove signal peptides from lipid-modified preproteins of eubacteria. As the catalytic mechanism employed by type II SPases was not known, the present studies were aimed at the identification of their potential active site residues. Comparison of the deduced amino acid sequences of 19 known type II SPases revealed the presence of five conserved domains. The importance of the 15 best conserved residues in these domains was investigated using the type II SPase of Bacillus subtilis, which, unlike SPase II of Escherichia coli, is not essential for viability. The results showed that only six residues are important for SPase II activity. These are Asp-14, Asn-99, Asp-102, Asn-126, Ala-128, and Asp-129. Only Asp-14 was required for stability of SPase II, indicating that the other five residues are required for catalysis, the active site geometry, or the specific recognition of lipid-modified preproteins. As Asp-102 and Asp-129 are the only residues invoked in the known catalytic mechanisms of proteases, we hypothesize that these two residues are directly involved in SPase II-mediated catalysis. This implies that type II SPases belong to a novel family of aspartic proteases.


Microbiology | 1997

The signal peptidase II (Isp) gene of Bacillus subtilis

Z Pragai; H Tjalsma; Albert Bolhuis; van Jan Maarten Dijl; G Venema; Sierd Bron

The gene encoding the type II signal peptidase (SPase II) of Bacillus subtilis was isolated by screening a genomic DNA library of this bacterium for the ability to increase the levels of globomycin resistance in Escherichia coli, and to complement the growth deficiency at the non-permissive temperature of E. coli strain Y815 carrying a temperature-sensitive mutation in its Isp gene for SPase II. The deduced amino acid sequence of the B. subtilis SPase II showed significant similarity with those of other known SPase II enzymes. Activity of the B. subtilis SPase II was demonstrated by a pulse-labelling experiment in E. coli. In B. subtilis, the Isp gene is flanked by the isoleucyl-tRNA synthetase (ileS) gene and the pyrimidine biosynthetic (pyr) gene cluster, which is known to map at 139 degrees of the chromosome. In the Gram-positive bacteria studied thus far, Isp appears to be the first gene in an operon. The promoter-distal gene (orf4) of this operon specifies a hypothetical protein in bacteria and yeast.

Collaboration


Dive into the Sierd Bron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G Venema

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H Tjalsma

Biotechnology Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge