Sif G. Rønn
Steno Diabetes Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sif G. Rønn.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Allan E. Karlsen; Sif G. Rønn; Karen Lindberg; Jesper Johannesen; Elisabeth D. Galsgaard; Flemming Pociot; Jens Høiriis Nielsen; Thomas Mandrup-Poulsen; Jørn Nerup; Nils Billestrup
Suppressor of cytokine signaling 3 (SOCS-3) is a negative feedback regulator of IFN-γ signaling, shown up-regulated in mouse bone marrow cells by the proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IFN-γ. IL-1β and IFN-γ alone, or potentiated by TNF-α, are cytotoxic to the insulin producing pancreatic β-cells and β-cell lines in vitro and suggested to contribute to the specific β-cell destruction in Type-1 diabetes mellitus (T1DM). Using a doxycycline-inducible SOCS-3 expression system in the rat β-cell line INS-1, we demonstrate that the toxic effect of both IL-1β or IFN-γ at concentrations that reduced the viability by 50% over 3 days, was fully preventable when SOCS-3 expression was turned on in the cells. At cytokine concentrations or combinations more toxic to the cells, SOCS-3 overexpression yielded a partial protection. Whereas SOCS-3-mediated inhibition of IFN-γ signaling is described in other cell systems, SOCS-3 mediated inhibition of IL-1β signaling has not previously been described. In addition we show that SOCS-3 prevention of IL-1β-induced toxicity is accompanied by inhibited transcription of the inducible nitric oxide synthase (iNOS) by 80%, resulting in 60% decreased formation of the toxic nitric oxide (NO). Analysis of isolated native rat islets exposed to IL-1β revealed a naturally occurring but delayed up-regulated SOCS-3 transcription. Influencing SOCS-3 expression thus represents an approach for affecting cytokine-induced signal transduction at a proximal step in the signal cascade, potentially useful in future therapies aimed at reducing the destructive potential of β-cell cytotoxic cytokines in T1DM, as well as other cytokine-dependent diseases.
Diabetologia | 2007
Lesli H. Larsen; M. Tonnesen; Sif G. Rønn; Joachim Størling; Sine W. Jørgensen; Paolo Mascagni; Charles A. Dinarello; Nils Billestrup; Thomas Mandrup-Poulsen
Aims/hypothesisThe immune-mediated elimination of pancreatic beta cells in type 1 diabetes involves release of cytotoxic cytokines such as IL-1β and IFNγ, which induce beta cell death in vitro by mechanisms that are both dependent and independent of nitric oxide (NO). Nuclear factor kappa B (NFκB) is a critical signalling molecule in inflammation and is required for expression of the gene encoding inducible NO synthase (iNOS) and of pro-apoptotic genes. NFκB has recently been shown to associate with chromatin-modifying enzymes histone acetyltransferases and histone deacetylases (HDAC), and positive effects of HDAC inhibition have been obtained in several inflammatory diseases. Thus, the aim of this study was to investigate whether HDAC inhibition protects beta cells against cytokine-induced toxicity.Materials and methodsThe beta cell line, INS-1, or intact rat islets were precultured with HDAC inhibitors suberoylanilide hydroxamic acid or trichostatin A in the absence or presence of IL-1β and IFNγ. Effects on insulin secretion and NO formation were measured by ELISA and Griess reagent, respectively. iNOS levels and NFκB activity were measured by immunoblotting and by immunoblotting combined with electrophoretic mobility shift assay, respectively. Viability was analysed by 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and apoptosis by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and histone-DNA complex ELISA.ResultsHDAC inhibition reduced cytokine-mediated decrease in insulin secretion and increase in iNOS levels, NO formation and apoptosis. IL-1β induced a bi-phasic phosphorylation of inhibitor protein kappa Bα (IκBα) with the 2nd peak being sensitive to HDAC inhibition. No effect was seen on IκBα degradation and NFκB DNA binding.Conclusions/interpretationHDAC inhibition prevents cytokine-induced beta cell apoptosis and impaired beta cell function associated with a downregulation of NFκB transactivating activity.
Molecular Medicine | 2011
Eli C. Lewis; Lykke Blaabjerg; Joachim Størling; Sif G. Rønn; Paolo Mascagni; Charles A. Dinarello; Thomas Mandrup-Poulsen
In type 1 diabetes, inflammatory and immunocompetent cells enter the islet and produce proinflammatory cytokines such as interleukin-1 β (IL-1β), IL-12, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); each contribute to β-cell destruction, mediated in part by nitric oxide. Inhibitors of histone deacetylases (HDAC) are used commonly in humans but also possess antiinflammatory and cytokine-suppressing properties. Here we show that oral administration of the HDAC inhibitor ITF2357 to mice normalized strep-tozotocin (STZ)-induced hyperglycemia at the clinically relevant doses of 1.25–2.5 mg/kg. Serum nitrite levels returned to nondiabetic values, islet function improved and glucose clearance increased from 14% (STZ) to 50% (STZ + ITF2357). In vitro, at 25 and 250 nmol/L, ITF2357 increased islet cell viability, enhanced insulin secretion, inhibited MIP-1 α and MIP-2 release, reduced nitric oxide production and decreased apoptosis rates from 14.3% (vehicle) to 2.6% (ITF2357). Inducible nitric oxide synthase (iNOS) levels decreased in association with reduced islet-derived nitrite levels. In peritoneal macrophages and splenocytes, ITF2357 inhibited the production of nitrite, as well as that of TNFα and IFNγ at an IC50 of 25–50 nmol/L. In the insulin-producing INS cells challenged with the combination of IL-1 β plus IFNγ, apoptosis was reduced by 50% (P < 0.01). Thus at clinically relevant doses, the orally active HDAC inhibitor ITF2357 favors β-cell survival during inflammatory conditions.
Diabetes | 2007
Sif G. Rønn; Nils Billestrup; Thomas Mandrup-Poulsen
The pathogenesis of type 1 diabetes is not clearly understood, but it is generally accepted that type 1 diabetes is an immune-mediated disease caused by inflammation in the islets of Langerhans. Infiltrating macrophages release proinflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α, which are toxic to the β-cell. Activated T-cells also produce proinflammatory cytokines such as TNF-α and interferon (IFN)-γ and express the apoptosis-inducing protein FasL. Moreover, CD8+ T-cells induce cell death via the perforin-granzyme pathway. The net effect of these different factors results in specific destruction of the insulin-producing β-cells (1). Type 2 diabetes occurs when β-cell secretory capacity fails to compensate for insulin resistance. In type 2 diabetes, cytokines are known to be involved in insulin and leptin resistance (2,3), and cytokines have also been suggested to contribute to β-cell failure of type 2 diabetes (4). In this review we focus on a group of proteins, the suppressors of cytokine signaling (SOCS), which affect cytokine signaling and appear to play an important role in the pathological processes leading to both type 1 and type 2 diabetes. The SOCS proteins were identified in 1997 and were characterized as a family of proteins capable of inhibiting Janus kinase (JAK)–signal transducers and activators of transcription (STAT) (JAK-STAT) signaling in various tissues (5–7). Eight members of the SOCS family have been identified, SOCS-1–7 and cytokine-inducible SH2-containing protein (CIS) (8). They all contain a conserved COOH-terminal region of ∼40 amino acids termed the SOCS box (Fig. 1) (5). They have a central SH2 domain, while the NH2-terminal region is of variable length with no recognizable motif (8). A kinase inhibitory region (KIR) consisting of 12 amino acids is found immediately NH2-terminal to the SH2 domain in SOCS-1 and SOCS-3 (9 …
Molecular and Cellular Endocrinology | 2009
Christine Bruun; Peter E. Heding; Sif G. Rønn; H Frobøse; Christopher J. Rhodes; Thomas Mandrup-Poulsen; Nils Billestrup
Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction of the pancreatic insulin-producing beta cells. Suppressor of cytokine signalling-3 (SOCS-3) proteins regulate signalling induced by a number of cytokines including growth hormone, IFNgamma and IL-1beta which signals via very distinctive pathways. The objective of this study was to investigate the effect of SOCS-3 on TNFalpha-induced signalling in beta cells. We found that apoptosis induced by TNFalpha alone or in combination with IL-1beta was suppressed by expression of SOCS-3 in the beta cell line INSr3#2. SOCS-3 inhibited TNFalpha-induced phosphorylation of the mitogen activated protein kinases ERK1/2, p38 and JNK in INSr3#2 cells and in primary rat islets. Furthermore, SOCS-3 repressed TNFalpha-induced degradation of IkappaB, NFkappaB DNA binding and transcription of the NFkappaB-dependent MnSOD promoter. Finally, expression of Socs-3 mRNA was induced by TNFalpha in rat islets in a transient manner with maximum expression after 1-2h. The ability of SOCS-3 to regulate signalling induced by the three major pro-inflammatory cytokines involved in the pathogenesis of T1DM makes SOCS-3 an interesting therapeutic candidate for protection of the beta cell mass.
Islets | 2012
Rahul Kapur; Tine Westergaard Højfeldt; Sif G. Rønn; Allan E. Karlsen; R. Scott Heller
The Reg3 peptides INGAP-PP and human Reg3α/β (HIP) have been hypothesized to stimulate β-cell neogenesis in the pancreas. Administration of INGAP-PP has been shown to cause an increase in β-cell mass in multiple animal models, reverse streptozotocin (STZ) induced diabetes in mice and reduces HbA1c levels in type 2 diabetic humans. In this study, we have examined the ability of the INGAP-PP and HIP peptides to induce β-cell formation in vivo in normal mice through short-term administration of the peptides. We assessed the peptides ability to induce an increase in extra-islet insulin-positive cell clusters by looking at β-cell number by point counting morphometry on pancreata that had been randomized using the smooth fractionator principle in non-diabetic NMRI mice after short-term injections of the peptides (5 d). Five day continuous BrdU labeling was used to determine if the new β-cells were derived from replicating β-cells. Real time quantitative RT-PCR and immuno-histochemistry was used to analyze changes in pancreatic transcription factor expression. A 1.5- to 2-fold increase in the volume of small extra-islet insulin-positive clusters post 5 d treatment with INGAP-PP and HIP as compared with mice treated with a non-peptide control or scrambled peptide (p < 0.05) (n = 7) was found. Five day continuous BrdU infusion during the 5 d period showed little or no incorporation in islets or small insulin clusters. Five days of treatment with INGAP-PP or HIP, showed a tendency toward increased levels of pancreatic progenitor markers such as Ngn3, Nkx6.1, Sox9 and Ins. These are the first studies to compare and indicate that the human Reg3 α/β (HIP) peptide has similar bioactivity in vivo as INGAP by causing formation of small β-cell clusters in extra-islet pancreatic tissue after only 5 d of treatment. Upregulation of pancreatic transcription factors may be part of the mechanism of action.
Molecular Endocrinology | 2006
H Frobøse; Sif G. Rønn; Peter E. Heding; Heidi Mendoza; Philip Cohen; Thomas Mandrup-Poulsen; Nils Billestrup
Diabetologia | 2004
Allan E. Karlsen; Peter E. Heding; H Frobøse; Sif G. Rønn; Mogens Kruhøffer; Torben F. Ørntoft; Martine Darville; Decio L. Eizirik; Flemming Pociot; Jørn Nerup; Thomas Mandrup-Poulsen; Nils Billestrup
Diabetologia | 2009
M L B Jacobsen; Sif G. Rønn; C Bruun; C M Larsen; Decio L. Eizirik; Thomas Mandrup-Poulsen; Nils Billestrup
Archive | 2012
Rahul Kapur; Tine Westergaard Højfeldt; John Patrick Mogensen; Allan Christian Shaw; Sif G. Rønn; Allan E. Karlsen; R. Scott Heller