Sigal Abramovich
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sigal Abramovich.
Palaeogeography, Palaeoclimatology, Palaeoecology | 2003
Sigal Abramovich; Gerta Keller; Doris Stüben; Zsolt Berner
Abstract Depth habitats of 56 late Cretaceous planktonic foraminiferal species from cool and warm climate modes were determined based on stable isotope analyses of deep-sea samples from the equatorial Pacific DSDP Sites 577A and 463, and South Atlantic DSDP Site 525A. The following conclusions can be reached: Planoglobulina multicamerata (De Klasz) and Heterohelix rajagopalani (Govindan) occupied the deepest plankton habitats, followed by Abathomphalus mayaroensis (Bolli), Globotruncanella havanensis (Voorwijk), Gublerina cuvillieri Kikoine, and Laeviheterohelix glabrans (Cushman) also at subthermocline depth. Most keeled globotruncanids, and possibly Globigerinelliodes and Racemiguembelina species, lived at or within the thermocline layer. Heterohelix globulosa (Ehrenberg) and Rugoglobigerina, Pseudotextularia and Planoglobulina occupied the subsurface depth of the mixed layer, and Pseudoguembelina species inhabited the surface mixed layer. However, depth ranking of some species varied depending on warm or cool climate modes, and late Campanian or Maastrichtian age. For example, most keeled globotruncanids occupied similar shallow subsurface habitats as Rugoglobigerina during the warm late Campanian, but occupied the deeper thermocline layer during cool climatic intervals. Two distinct types of ‘vital effect’ mechanisms reflecting photosymbiosis and respiration effects can be recognized by the exceptional δ13C signals of some species. (1) Photosymbiosis is implied by the repetitive pattern of relatively enriched δ13C values of Racemiguembelina (strongest), Planoglobulina, Rosita and Rugoglobigerina species, Pseudoguembelina excolata (weakest). (2) Enriched respiration 12C products are recognized in A. mayaroensis, Gublerina acuta De Klasz, and Heterohelix planata (Cushman). Isotopic trends between samples suggest that photosymbiotic activities varied between localities or during different climate modes, and may have ceased under certain environmental conditions. The appearance of most photosymbiotic species in the late Maastrichtian suggests oligotrophic conditions associated with increased water-mass stratification.
Marine Micropaleontology | 2003
Sigal Abramovich; Gerta Keller
An abrupt global warming of 3–4°C occurred near the end of the Maastrichtian at 65.45–65.10 Ma. The environmental effects of this warm event are here documented based on stable isotopes and quantitative analysis of planktonic foraminifera at the South Atlantic DSDP Site 525A. Stable isotopes of individual species mark a rapid increase in temperature and a reduction in the vertical water mass stratification that is accompanied by a decrease in niche habitats, reduced species diversity and/or abundance, smaller species morphologies or dwarfing, and reduced photosymbiotic activity. During the warm event, the relative abundance of a large number of species decreased, including tropical–subtropical affiliated species, whereas typical mid-latitude species retained high abundances. This indicates that climate warming did not create favorable conditions for all tropical–subtropical species at mid-latitudes and did not cause a massive retreat in the local mid-latitude population. A noticeable exception is the ecological generalist Heterohelix dentata Stenestad that dominated during the cool intervals, but significantly decreased during the warm event. However, dwarfing is the most striking response to the abrupt warming and occurred in various species of different morphologies and lineages (e.g. biserial, trochospiral, keeled globotruncanids). Dwarfing is a typical reaction to environmental stress conditions and was likely the result of increased reproduction rates. Similarly, photosymbiotic activity appears to have been reduced significantly during the maximum warming, as indicated by decreased δ13C values. The foraminiferal response to climate change is thus multifaceted resulting in decreased species diversity, decreased species populations, increased competition due to reduced niche habitats, dwarfing and reduced photosymbiotic activity.
Marine Micropaleontology | 2003
Sigal Abramovich; Gerta Keller; Thierry Adatte; Wolfgang Stinnesbeck; Lukas Hottinger; D. Stueben; Zsolt Berner; B. Ramanivosoa; A. Randriamanantenasoa
Abstract Lithology, geochemistry, stable isotopes and integrated high-resolution biostratigraphy of the Berivotra and Amboanio sections provide new insights into the age, faunal turnovers, climate, sea level and environmental changes of the Maastrichtian to early Paleocene of the Mahajanga Basin of Madagascar. In the Berivotra type area, the dinosaur-rich fluvial lowland sediments of the Anembalemba Member prevailed into the earliest Maastrichtian. These are overlain by marginal marine and near-shore clastics that deepen upwards to hemipelagic middle neritic marls by 69.6 Ma, accompanied by arid to seasonally cool temperate climates through the early and late Maastrichtian. An unconformity between the Berivotra Formation and Betsiboka limestone marks the K–T boundary, and juxtaposes early Danian (zone Plc? or Pld) and latest Maastrichtian (zones CF2–CF1, Micula prinsii ) sediments. Seasonally humid warm climates began near the end of the Maastrichtian and prevailed into the early Danian, accompanied by increased volcanic activity. During the late Danian (zones P1d–P2), a change to seasonally arid climates was accompanied by deepening from middle to outer neritic depths.
Geology | 1998
Sigal Abramovich; Ahuva Almogi-Labin; Chaim Benjamini
An outer shelf–upper slope tropical Tethyan pelagic environment existed over southern Israel during Maastrichtian time. Planktic foraminifera in the >63 and >149 µm size fractions from four sections in this area were studied quantitatively for a high-resolution ecostratigraphic analysis of the pre–Cretaceous-Tertiary (K-T) paleoenvironment. During the Maastrichtian, 41% of the planktic foraminifera species became extinct, mostly keeled Globotruncanidae , which also became quantitatively reduced near the end of the Maastrichtian from as much as 35% to only 5% of the planktic foraminifera population. Evolutionary replacement of extinct species by new forms nearly ceased in that interval. Two major opportunistic blooms of Guembelitria took place, associated with reduced abundances of keeled forms and the dominant species Heterohelix globulosa . The first bloom occurred within the upper Gansserina gansseri to lower Abathomphalus mayaroensis Zones and the second within the Plummerita hantkeninoides Zone. The extinctions, concomitant changes in faunal dominance, and opportunist blooms indicate that the pelagic ecosystem in the Negev area experienced multiple stresses during the Maastrichtian. The planktic foraminiferal assemblages were taxonomically impoverished and in decline prior to the K-T boundary crisis.
Marine Pollution Bulletin | 2011
Ruthie Nina Arieli; Ahuva Almogi-Labin; Sigal Abramovich; Barak Herut
The thermal pollution patch of Hadera power plant was used as a natural laboratory to evaluate the potential long-term effects of rise in Eastern Mediterranean SST on living benthic foraminifera. Their sensitivity to environmental changes makes foraminifera ideal for this study. Ten monthly sampling campaigns were performed in four stations located along a temperature gradient up to 10 °C from the discharge site of heated seawater to a control station. The SST along this transect varied between 25/18 °C in winter and 36/31 °C in summer. A significant negative correlation was found between SST in all stations and benthic foraminiferal abundance, species richness and diversity. The total foraminiferal abundance and species richness was particularly low at the thermally polluted stations especially during summer when SST exceeded 30 °C, but also throughout the entire year. This indicates that thermal pollution has a detrimental effect on benthic foraminifera, irrelevant to the natural seasonal changes in SST.
Palaeogeography, Palaeoclimatology, Palaeoecology | 2003
Doris Stüben; Utz Kramar; Zsolt Berner; M. Meudt; Gerta Keller; Sigal Abramovich; Thierry Adatte; Ulrich Hambach; Wolfgang Stinnesbeck
Abstract Milankovitch-scale cycles can be recognized in high-resolution δ13C, δ18O, Sr/Ca, mineralogical, and magnetic susceptibility data in hemipelagic sediments that span the last 700 kyr of the Maastrichtian at Elles, Tunisia. Oxygen isotope data reveal three cool periods between 65.50 and 65.55 Ma (21.5–23.5 m), 65.26 and 65.33 Ma (8–11 m), and 65.04 and 65.12 Ma (1.5–4 m), and three warm periods between 65.33 and 65.38 Ma (12–16 m), 65.12 and 65.26 Ma (4–8 m), and 65.00 and 65.04 Ma (0–1.5 m). The cool periods are characterized by small surface-to-deep temperature gradients that reflect intensive mixing of the water column. The surface-to-deep Sr/Ca gradient generally correlates with the oscillating ΔT trend (temperature difference between surface and bottom waters). The carbon isotope composition of planktonic foraminifera indicates a continuous decrease in surface bioproductivity during Late Maastrichtian. Decreasing Δ13C values (difference between the δ13C values of surface and bottom dwelling foraminifera) and the carbon isotope ratios of the planktonic species at the onset of gradual warming at 65.50 Ma reflect a reduction in surface productivity as a result of decreased upwelling that accompanied global warming and possibly increased atmospheric pCO2 related to Deccan Trap volcanism. Time series analysis applied to magnetic susceptibility, δ18O, and Sr/Ca data identifies the 20 kyr precession, 40 kyr obliquity, and 100 kyr eccentricity Milankovich cycles.
Bulletin De La Societe Geologique De France | 2005
Thierry Adatte; Gerta Keller; Doris Stüben; M. Harting; Utz Kramar; Wolfgang Stinnesbeck; Sigal Abramovich; Chaim Benjamini
The late Maastrichtian to early Danian at Mishor Rotem, Israel, was examined based on geochemistry, bulk rock and clay mineralogies, biostratigraphy and lithology. This section contains four red clay layers of suspect impact or volcanic origin interbedded in chalk and marly chalks. PGE anomalies indicate that only the K/T boundary red layer has an Ir dominated PGE anomaly indicative of an impact source. The late Maastrichtian red clays have Pd dominated PGE anomalies which coincide with increased trace elements of terrigenous and volcanogenic origins. Deccan or Syrian-Turkey arc volcanism is the likely source of volcanism in these clay layers. Glauconite, goethite and translucent amber spherules are present in the clay layers, but the Si-rich spherules reported by Rosenfeld et al. [l989] could not be confirmed. The absence of Cheto smectite indicates that no altered impact glass has been present. The red layers represent condensed sedimentation on topographic highs during sea level highstands. In the Negev area, during the late Maastrichtian, the climate ranged from seasonally wet to more arid conditions during zones CF3 and CF2, with more humid wet conditions in the latest Maastrichtian zone CF1 and in the early Danian, probably linked to greenhouse conditions. Planktic foraminifera experienced relatively high stress conditions during this time as indicated by the low species richness and low abundance of globotruncanids. Times of intensified stress are indicated by the disaster opportunist Guembelitria blooms, which can be correlated to central Egypt and also to Indian Ocean localities associated with mantle plume volcanism. Marine plankton thus support the mineralogical and geochemical observations of volcanic influx and reveal the detrimental biotic effects of intense volcanism.
PLOS ONE | 2015
Christiane Schmidt; Raphaël Morard; Ahuva Almogi-Labin; A E Weinmann; Danna Titelboim; Sigal Abramovich; Michal Kucera
The eastern Mediterranean is a hotspot of biological invasions. Numerous species of Indo-pacific origin have colonized the Mediterranean in recent times, including tropical symbiont-bearing foraminifera. Among these is the species Pararotalia calcariformata. Unlike other invasive foraminifera, this species was discovered only two decades ago and is restricted to the eastern Mediterranean coast. Combining ecological, genetic and physiological observations, we attempt to explain the recent invasion of this species in the Mediterranean Sea. Using morphological and genetic data, we confirm the species attribution to P. calcariformata McCulloch 1977 and identify its symbionts as a consortium of diatom species dominated by Minutocellus polymorphus. We document photosynthetic activity of its endosymbionts using Pulse Amplitude Modulated Fluorometry and test the effects of elevated temperatures on growth rates of asexual offspring. The culturing of asexual offspring for 120 days shows a 30-day period of rapid growth followed by a period of slower growth. A subsequent 48-day temperature sensitivity experiment indicates a similar developmental pathway and high growth rate at 28°C, whereas an almost complete inhibition of growth was observed at 20°C and 35°C. This indicates that the offspring of this species may have lower tolerance to cold temperatures than what would be expected for species native to the Mediterranean. We expand this hypothesis by applying a Species Distribution Model (SDM) based on modern occurrences in the Mediterranean using three environmental variables: irradiance, turbidity and yearly minimum temperature. The model reproduces the observed restricted distribution and indicates that the range of the species will drastically expand westwards under future global change scenarios. We conclude that P. calcariformata established a population in the Levant because of the recent warming in the region. In line with observations from other groups of organisms, our results indicate that continued warming of the eastern Mediterranean will facilitate the invasion of more tropical marine taxa into the Mediterranean, disturbing local biodiversity and ecosystem structure.
Scientific Reports | 2016
Christiane Schmidt; Danna Titelboim; J Brandt; Barak Herut; Sigal Abramovich; Ahuva Almogi-Labin; Michal Kucera
Bleaching, the loss of algal symbionts, occurs in marine photosymbiotic organisms at water temperatures minimally exceeding average summer SST (sea surface temperatures). Pre-adaptation allows organisms to persist under warmer conditions, providing the tolerance can be carried to new habitats. Here we provide evidence for the existence of such adaptation in the benthic foraminifera Pararotalia calcariformata. This species occurs at a thermally polluted site in the Mediterranean, where water temperatures reach a maxima daily average of 36 °C during the summer. To test whether this occurrence represents a widespread adaptation, we conducted manipulative experiments exposing this species from an unpolluted site to elevated temperatures (20–42 °C). It was kept in co-culture with the more thermally sensitive foraminifera Amphistegina lobifera in two experiments (20–36 °C). Reduced photosynthetic activity in A. lobifera occurred at 32 °C whereas photochemical stress in P. calcariformata was first observed during exposure to 36 °C. Pararotalia calcariformata survived all treatment conditions and grew under 36 °C. The photosymbiosis in P. calcariformata is unusually thermally tolerant. These observations imply that marine eukaryote-eukaryote photosymbiosis can respond to elevated temperatures by drawing on a pool of naturally occurring pre-adaptations. It also provides a perspective on the massive occurrence of symbiont-bearing foraminifera in the early Cenozoic hothouse climate.
Marine Pollution Bulletin | 2016
Danna Titelboim; Ahuva Almogi-Labin; Barak Herut; Michal Kucera; Christiane Schmidt; Orit Hyams-Kaphzan; Ofer Ovadia; Sigal Abramovich
Persistent thermohaline pollution at a site along the northern coast of Israel, due to power and desalination plants, is used as a natural laboratory to evaluate the effects of rising temperature and salinity levels on benthic foraminifera living in shallow hard-bottom habitats. Biomonitoring of the disturbed area and a control station shows that elevated temperature is a more significant stressor compared to salinity, thus causing a decrease in abundance and richness. Critical temperature thresholds were observed at 30 and 35°C, the latter representing the most thermally tolerant species in the studied area Pararotalia calcariformata, which is the only symbiont-bearing species observed within the core of the heated area. Common species of the shallow hard-bottom habitats including several Lessepsian invaders are almost absent in the most exposed site indicating that excess warming will likely impede the survival of these species that currently benefit from the ongoing warming of the Eastern Mediterranean.