Sigal Ben-Yehuda
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sigal Ben-Yehuda.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Steven S. Branda; José Eduardo González-Pastor; Sigal Ben-Yehuda; Richard Losick; Roberto Kolter
Spore formation by the bacterium Bacillus subtilis has long been studied as a model for cellular differentiation, but predominantly as a single cell. When analyzed within the context of highly structured, surface-associated communities (biofilms), spore formation was discovered to have heretofore unsuspected spatial organization. Initially, motile cells differentiated into aligned chains of attached cells that eventually produced aerial structures, or fruiting bodies, that served as preferential sites for sporulation. Fruiting body formation depended on regulatory genes required early in sporulation and on genes evidently needed for exopolysaccharide and surfactin production. The formation of aerial structures was robust in natural isolates but not in laboratory strains, an indication that multicellularity has been lost during domestication of B. subtilis. Other microbial differentiation processes long thought to involve only single cells could display the spatial organization characteristic of multicellular organisms when studied with recent natural isolates.
Cell | 2011
Gyanendra Prakash Dubey; Sigal Ben-Yehuda
Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.
Cell | 2002
Sigal Ben-Yehuda; Richard Losick
A fundamental feature of development in the spore-forming bacterium Bacillus subtilis is the switch from medial to asymmetric division. The switch is brought about by a change in the location of the cytokinetic Z ring, which is composed of the tubulin-like protein FtsZ, from the cell middle to the poles during sporulation. We report that the medial Z ring is replaced by a spiral-like filament of FtsZ that grows along the long axis of the cell. We propose that the filament mediates the switch by redeploying FtsZ to the poles. Spiral formation and the switch to polar Z rings are largely caused by a sporulation-specific increase in transcription of the gene for FtsZ and activation of the gene for the FtsZ-associated protein SpoIIE.
Journal of Molecular Biology | 2003
Patrick Eichenberger; Shane T. Jensen; Erin M. Conlon; Christiaan van Ooij; Jessica M. Silvaggi; José Eduardo González-Pastor; Masaya Fujita; Sigal Ben-Yehuda; Patrick Stragier; Jun S. Liu; Richard Losick
We report the identification and characterization on a genome-wide basis of genes under the control of the developmental transcription factor sigma(E) in Bacillus subtilis. The sigma(E) factor governs gene expression in the larger of the two cellular compartments (the mother cell) created by polar division during the developmental process of sporulation. Using transcriptional profiling and bioinformatics we show that 253 genes (organized in 157 operons) appear to be controlled by sigma(E). Among these, 181 genes (organized in 121 operons) had not been previously described as members of this regulon. Promoters for many of the newly identified genes were located by transcription start site mapping. To assess the role of these genes in sporulation, we created null mutations in 98 of the newly identified genes and operons. Of the resulting mutants, 12 (in prkA, ybaN, yhbH, ykvV, ylbJ, ypjB, yqfC, yqfD, ytrH, ytrI, ytvI and yunB) exhibited defects in spore formation. In addition, subcellular localization studies were carried out using in-frame fusions of several of the genes to the coding sequence for GFP. A majority of the fusion proteins localized either to the membrane surrounding the developing spore or to specific layers of the spore coat, although some fusions showed a uniform distribution in the mother cell cytoplasm. Finally, we used comparative genomics to determine that 46 of the sigma(E)-controlled genes in B.subtilis were present in all of the Gram-positive endospore-forming bacteria whose genome has been sequenced, but absent from the genome of the closely related but not endospore-forming bacterium Listeria monocytogenes, thereby defining a core of conserved sporulation genes of probable common ancestral origin. Our findings set the stage for a comprehensive understanding of the contribution of a cell-specific transcription factor to development and morphogenesis.
Science | 2011
Keren Nevo-Dinur; Anat Nussbaum-Shochat; Sigal Ben-Yehuda; Orna Amster-Choder
Sequences within messenger RNAs target them to sites in the bacterial cell where the resulting proteins function. Understanding the organization of a bacterial cell requires the elucidation of the mechanisms by which proteins localize to particular subcellular sites. Thus far, such mechanisms have been suggested to rely on embedded features of the localized proteins. Here, we report that certain messenger RNAs (mRNAs) in Escherichia coli are targeted to the future destination of their encoded proteins, cytoplasm, poles, or inner membrane in a translation-independent manner. Cis-acting sequences within the transmembrane-coding sequence of the membrane proteins are necessary and sufficient for mRNA targeting to the membrane. In contrast to the view that transcription and translation are coupled in bacteria, our results show that, subsequent to their synthesis, certain mRNAs are capable of migrating to particular domains in the cell where their future protein products are required.
EMBO Reports | 2011
Yaara Oppenheimer-Shaanan; Ezequiel Wexselblatt; Jehoshua Katzhendler; Eylon Yavin; Sigal Ben-Yehuda
The bacterium Bacillus subtilis produces the DNA integrity scanning protein (DisA), a checkpoint protein that delays sporulation in response to DNA damage. DisA scans the chromosome and pauses at sites of DNA lesions. Structural analysis showed that DisA synthesizes the small molecule cyclic diadenosine monophosphate (c‐di‐AMP). Here, we demonstrate that the intracellular concentration of c‐di‐AMP rises markedly at the onset of sporulation in a DisA‐dependent manner. Furthermore, exposing sporulating cells to DNA‐damaging agents leads to a global decrease in the level of this molecule. This drop was associated with stalled DisA complexes that halt c‐di‐AMP production and with increased levels of the c‐di‐AMP‐degrading enzyme YybT. Reduced c‐di‐AMP levels cause a delay in sporulation that can be reversed by external supplementation of the molecule. Thus, c‐di‐AMP acts as a secondary messenger, coupling DNA integrity with progression of sporulation.
Cell | 2006
Michal Bejerano-Sagie; Yaara Oppenheimer-Shaanan; Idit Berlatzky; Alex Rouvinski; Mor Meyerovich; Sigal Ben-Yehuda
In response to DNA damage, cells activate checkpoint signaling cascades to control cell-cycle progression and elicit DNA repair in order to maintain genomic integrity. The sensing and repair of lesions is critical for Bacillus subtilis cells entering the developmental process of sporulation as damaged DNA may prevent the cells from completing spore morphogenesis. We report the identification of the protein DisA (DNA integrity scanning protein, annotated YacK), which is required to delay the initiation of sporulation in response to chromosomal damage. DisA is a nonspecific DNA binding protein that forms a single focus, which moves rapidly within the bacterial cell, pausing at sites of DNA damage. We propose that the DisA focus scans along the chromosomes searching for lesions. Upon encountering a lesion, DisA delays entry into sporulation until the damage is repaired.
PLOS Pathogens | 2012
Ezequiel Wexselblatt; Yaara Oppenheimer-Shaanan; Ilana Kaspy; Nir London; Ora Schueler-Furman; Eylon Yavin; Gad Glaser; Joshua Katzhendler; Sigal Ben-Yehuda
Finding bacterial cellular targets for developing novel antibiotics has become a major challenge in fighting resistant pathogenic bacteria. We present a novel compound, Relacin, designed to inhibit (p)ppGpp production by the ubiquitous bacterial enzyme RelA that triggers the Stringent Response. Relacin inhibits RelA in vitro and reduces (p)ppGpp production in vivo. Moreover, Relacin affects entry into stationary phase in Gram positive bacteria, leading to a dramatic reduction in cell viability. When Relacin is added to sporulating Bacillus subtilis cells, it strongly perturbs spore formation regardless of the time of addition. Spore formation is also impeded in the pathogenic bacterium Bacillus anthracis that causes the acute anthrax disease. Finally, the formation of multicellular biofilms is markedly disrupted by Relacin. Thus, we establish that Relacin, a novel ppGpp analogue, interferes with bacterial long term survival strategies, placing it as an attractive new antibacterial agent.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Idit Berlatzky; Alex Rouvinski; Sigal Ben-Yehuda
Emerging evidence indicates that the global organization of the bacterial chromosome is defined by its physical map. This architectural understanding has been gained mainly by observing the localization and dynamics of specific chromosomal loci. However, the spatial and temporal organization of the entire mass of newly synthesized DNA remains elusive. To visualize replicated DNA within living cells, we developed an experimental system in the bacterium Bacillus subtilis whereby fluorescently labeled nucleotides are incorporated into the chromosome as it is being replicated. Here, we present the first visualization of replication morphologies exhibited by the bacterial chromosome. At the start of replication, newly synthesized DNA is translocated via a helical structure from midcell toward the poles, where it accumulates. Next, additionally synthesized DNA forms a second, visually distinct helix that interweaves with the original one. In the final stage of replication, the space between the two helices is filled up with the very last synthesized DNA. This striking geometry provides insight into the three-dimensional conformation of the replicating chromosome.
Genes & Development | 2008
Kathleen A. Marquis; Briana M. Burton; Jerod L. Ptacin; Carlos Bustamante; Sigal Ben-Yehuda; David Z. Rudner
The FtsK/SpoIIIE family of DNA transporters are responsible for translocating missegregated chromosomes after the completion of cell division. An extreme example of this post-cytokinetic DNA segregation occurs during spore formation in the bacterium Bacillus subtilis, where SpoIIIE pumps three-quarters of the chromosome (>3 megabases) into one of the two daughter cells. Here, we investigate the fate of the proteins associated with the translocated DNA. Taking advantage of several unique features of Bacillus sporulation, we demonstrate that RNA polymerase, transcription factors, and chromosome remodeling proteins are stripped off the DNA during translocation of the chromosome into the forespore compartment. Furthermore, we show that in vitro the soluble ATPase domain of SpoIIIE can displace RNA polymerase bound to DNA, suggesting that SpoIIIE alone is capable of this wire-stripping activity. Our data suggest that the bulk of the forespore chromosome is translocated naked into the forespore compartment. We propose that the translocation-stripping activity of SpoIIIE plays a key role in reprogramming developmental gene expression in the forespore.