Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sigbjørn Lien is active.

Publication


Featured researches published by Sigbjørn Lien.


Science | 2009

Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds

Ra Gibbs; Jf Taylor; Cp Van Tassel; W. Barendse; Ka Eversole; Ca Gill; Rd Green; Dl Hamernik; Sm Kappes; Sigbjørn Lien; Lk Matukumalli; Jc Mcevan; Lv Mazareth; Rd Schnabel; Gm Weinstock; Da Wheeler; Paolo Ajmone Marsan; Pj Boettcher; Ar Caetano; Jf Garcia; Olivier Hanotte; Paola Mariani; Lc Skow; Ts Sonstegard; Jl Williams; B Diallo; L Hailemariam; Ml Martinez; Ca Morris; Lo Silva

A survey of genetic diversity of cattle suggests two domestication events in Asia and selection by husbandry. Not Just Dinner on Legs Several thousand years ago, human beings realized the virtues of domesticating wild animals as easy meat. Soon other possibilities became apparent, and as revealed in a series of papers in this issue, early pastoralists became selective about breeding for wool, leather, milk, and muscle power. In two papers, Gibbs et al. report on the bovine genome sequence (p. 522; see the cover, the Perspective by Lewin, and the Policy Forum by Roberts) and trace the diversity and genetic history of cattle (p. 528), while Chessa et al. (p. 532) survey the occurrence of endogenous retroviruses in sheep and map their distribution to historical waves of human selection and dispersal across Europe. Finally, Ludwig et al. (p. 485) note the origins of variation in the coat-color of horses and suggest that it is most likely to have been selected for by humans in need of good-looking transport. The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.


Nature | 2011

The genome sequence of Atlantic cod reveals a unique immune system

Bastiaan Star; Sissel Jentoft; Unni Grimholt; Martin Malmstrøm; Tone F. Gregers; Trine B. Rounge; Jonas Paulsen; Monica Hongrø Solbakken; Animesh Sharma; Ola F. Wetten; Anders Lanzén; Roger Winer; James Knight; Jan-Hinnerk Vogel; Bronwen Aken; Øivind Andersen; Karin Lagesen; Ave Tooming-Klunderud; Rolf B. Edvardsen; Kirubakaran G. Tina; Mari Espelund; Chirag Nepal; Christopher Previti; Bård Ove Karlsen; Truls Moum; Morten Skage; Paul R. Berg; Tor Gjøen; Heiner Kuhl; Jim Thorsen

Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.


Mammalian Genome | 1995

The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination.

Helge Klungland; Dag Inge Våge; Luis Gomez-Raya; Stefan Adalsteinsson; Sigbjørn Lien

The melanocyte-stimulating hormone (MSH) receptor has a major function in the regulation of black (eumelanin) versus red (phaeomelanin) pigment synthesis within melanocytes. We report three alleles of the MSH-receptor gene found in cattle. A point mutation in the dominant allele ED gives black coat color, whereas a frameshift mutation, producing a prematurely terminated receptor, in homozygous e/e animals, produces red coat color. The wild-type allele E+ produces a variety of colors, reflecting the possibilities for regulating the normal receptor. Microsatellite analysis, RFLP studies, and coat color information were used to localize the MSH-receptor to bovine Chromosome (Chr) 18.


Nature | 2016

The Atlantic salmon genome provides insights into rediploidization

Sigbjørn Lien; Ben F. Koop; Simen Rød Sandve; Jason R. Miller; Matthew Kent; Torfinn Nome; Torgeir R. Hvidsten; Jong Leong; David R. Minkley; Aleksey V. Zimin; Fabian Grammes; Harald Grove; Arne B. Gjuvsland; Brian Walenz; Russell A. Hermansen; Kristian R. von Schalburg; Eric B. Rondeau; Alex Di Genova; Jeevan Karloss Antony Samy; Jon Olav Vik; Magnus Dehli Vigeland; Lis Caler; Unni Grimholt; Sissel Jentoft; Dag Inge Våge; Pieter J. de Jong; Thomas Moen; Matthew Baranski; Yniv Palti; Douglas W. Smith

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


Nature Genetics | 2008

Highly effective SNP-based association mapping and management of recessive defects in livestock

Carole Charlier; Wouter Coppieters; Frédéric Rollin; Daniel Desmecht; Jørgen S. Agerholm; Nadine Cambisano; Eloisa Carta; Sabrina Dardano; Marc Dive; Jean-Claude Frennet; R Hanset; Xavier Hubin; Claus B. Jørgensen; Latifa Karim; Matthew Kent; Kirsten Harvey; Brian R. Pearce; Patricia Simon; Nico Tama; Haisheng Nie; Sébastien Vandeputte; Sigbjørn Lien; Maria Longeri; Merete Fredholm; Robert J. Harvey; Michel Georges

The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.


Genome Biology | 2010

Sequencing the genome of the Atlantic salmon (Salmo salar)

William S. Davidson; Benjamin F. Koop; Steven J.M. Jones; Patricia Iturra; Rodrigo Vidal; Alejandro Maass; Inge Jonassen; Sigbjørn Lien; Stig W. Omholt

The International Collaboration to Sequence the Atlantic Salmon Genome (ICSASG) will produce a genome sequence that identifies and physically maps all genes in the Atlantic salmon genome and acts as a reference sequence for other salmonids.


BMC Genomics | 2011

A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns

Sigbjørn Lien; Lars Halvor Gidskehaug; Thomas Moen; Ben J. Hayes; Paul R. Berg; William S. Davidson; Stig W. Omholt; Matthew Kent

BackgroundThe Atlantic salmon genome is in the process of returning to a diploid state after undergoing a whole genome duplication (WGD) event between 25 and100 million years ago. Existing data on the proportion of paralogous sequence variants (PSVs), multisite variants (MSVs) and other types of complex sequence variation suggest that the rediplodization phase is far from over. The aims of this study were to construct a high density linkage map for Atlantic salmon, to characterize the extent of rediploidization and to improve our understanding of genetic differences between sexes in this species.ResultsA linkage map for Atlantic salmon comprising 29 chromosomes and 5650 single nucleotide polymorphisms (SNPs) was constructed using genotyping data from 3297 fish belonging to 143 families. Of these, 2696 SNPs were generated from ESTs or other gene associated sequences. Homeologous chromosomal regions were identified through the mapping of duplicated SNPs and through the investigation of syntenic relationships between Atlantic salmon and the reference genome sequence of the threespine stickleback (Gasterosteus aculeatus). The sex-specific linkage maps spanned a total of 2402.3 cM in females and 1746.2 cM in males, highlighting a difference in sex specific recombination rate (1.38:1) which is much lower than previously reported in Atlantic salmon. The sexes, however, displayed striking differences in the distribution of recombination sites within linkage groups, with males showing recombination strongly localized to telomeres.ConclusionThe map presented here represents a valuable resource for addressing important questions of interest to evolution (the process of re-diploidization), aquaculture and salmonid life history biology and not least as a resource to aid the assembly of the forthcoming Atlantic salmon reference genome sequence.


Genetics | 2009

The Accuracy of Genomic Selection in Norwegian Red Cattle Assessed by Cross-Validation

Tu Luan; John Woolliams; Sigbjørn Lien; Matthew Kent; Morten Svendsen; Theo H. E. Meuwissen

Genomic Selection (GS) is a newly developed tool for the estimation of breeding values for quantitative traits through the use of dense markers covering the whole genome. For a successful application of GS, accuracy of the prediction of genomewide breeding value (GW-EBV) is a key issue to consider. Here we investigated the accuracy and possible bias of GW-EBV prediction, using real bovine SNP genotyping (18,991 SNPs) and phenotypic data of 500 Norwegian Red bulls. The study was performed on milk yield, fat yield, protein yield, first lactation mastitis traits, and calving ease. Three methods, best linear unbiased prediction (G-BLUP), Bayesian statistics (BayesB), and a mixture model approach (MIXTURE), were used to estimate marker effects, and their accuracy and bias were estimated by using cross-validation. The accuracies of the GW-EBV prediction were found to vary widely between 0.12 and 0.62. G-BLUP gave overall the highest accuracy. We observed a strong relationship between the accuracy of the prediction and the heritability of the trait. GW-EBV prediction for production traits with high heritability achieved higher accuracy and also lower bias than health traits with low heritability. To achieve a similar accuracy for the health traits probably more records will be needed.


Molecular Ecology | 2013

SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar)

Vincent Bourret; Matthew Kent; Craig R. Primmer; Anti Vasemägi; Sten Karlsson; Kjetil Hindar; Philip McGinnity; Eric Verspoor; Louis Bernatchez; Sigbjørn Lien

Atlantic salmon (Salmo salar) is one of the most extensively studied fish species in the world due to its significance in aquaculture, fisheries and ongoing conservation efforts to protect declining populations. Yet, limited genomic resources have hampered our understanding of genetic architecture in the species and the genetic basis of adaptation to the wide range of natural and artificial environments it occupies. In this study, we describe the development of a medium‐density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing. The array was used in the most extensive assessment of population genetic structure performed to date in this species. A total of 6176 informative SNPs were successfully genotyped in 38 anadromous and freshwater wild populations distributed across the species natural range. Principal component analysis clearly differentiated European and North American populations, and within Europe, three major regional genetic groups were identified for the first time in a single analysis. We assessed the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups. In Europe, secondary contact zones were identified between major clusters where endogenous and exogenous barriers could be associated, rendering the interpretation of environmental influence on potentially adaptive divergence equivocal. A small number of markers highly divergent in allele frequencies (outliers) were observed between (multiple) freshwater and anadromous populations, between northern and southern latitudes, and when comparing Baltic populations to all others. We also discuss the potential future applications of the SNP array for conservation, management and aquaculture.


Nature | 2015

Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon

Nicola J. Barson; Tutku Aykanat; Kjetil Hindar; Matthew Baranski; Geir H. Bolstad; Peder Fiske; Celeste Jacq; Arne J. Jensen; Susan E. Johnston; Sten Karlsson; Matthew Kent; Thomas Moen; Eero Niemelä; Torfinn Nome; T. F. Næsje; Panu Orell; Atso Romakkaniemi; Harald Sægrov; Kurt Urdal; Jaakko Erkinaro; Sigbjørn Lien; Craig R. Primmer

Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.

Collaboration


Dive into the Sigbjørn Lien's collaboration.

Top Co-Authors

Avatar

Matthew Kent

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanne Gro Olsen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Ben J. Hayes

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Thomas Moen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Eli Grindflek

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Dag Inge Våge

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Harald Grove

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Ingrid Olsaker

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Morten Svendsen

Norwegian University of Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge