Sigfrido Scarpa
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sigfrido Scarpa.
Molecular and Cellular Neuroscience | 2005
Andrea Fuso; Laura Seminara; Rosaria A. Cavallaro; Fabrizio D'Anselmi; Sigfrido Scarpa
Few diseases are characterized by high homocysteine (HCY) and low folate and vitamin B12 blood levels. Alzheimer disease (AD) is among these. It has already been shown that DNA methylation is involved in amyloid precursor protein (APP) processing and beta-amyloid (A beta) production through the regulation of Presenilin1 (PS1) expression and that exogenous S-adenosylmethionine (SAM) can silence the gene reducing A beta production. Here we demonstrate that BACE (beta-secretase), as well as PS1, is regulated by methylation and that the reduction of folate and vitamin B12 in culture medium can cause a reduction of SAM levels with consequent increase in presenilin1 and BACE levels and with increase in A beta production. The simultaneous administration of SAM to the deficient medium can restore the normal gene expression, thus reducing the A beta levels. The use of deprived medium was intended to mimic a mild nutritional deficit involved in the onset of AD.
FEBS Letters | 2003
Sigfrido Scarpa; Andrea Fuso; Fabrizio D'Anselmi; Rosaria A. Cavallaro
Presenilin 1 (PS1) is a key factor for β‐amyloid (Ab) formation in Alzheimer disease (AD). Homocysteine accumulation, frequently observed in AD patients, may be a sign of a metabolic alteration in the S‐adenosylmethionine (SAM) cycle, which generates the overexpression of genes controlled by methylation of their promoters, when the cytosine in CpG moieties becomes unmethylated. The methylation of a gene involved in the processing of amyloid precursor protein may prevent Ab formation by silencing the gene. Here we report that SAM administration, in human neuroblastoma SK‐N‐SH cell cultures, downregulates PS1 gene expression and Ab production.
Molecular and Cellular Neuroscience | 2008
Andrea Fuso; Vincenzina Nicolia; Rosaria A. Cavallaro; Laura Ricceri; Fabrizio D'Anselmi; Pierpaolo Coluccia; Gemma Calamandrei; Sigfrido Scarpa
Etiological and molecular studies on the sporadic form of Alzheimers disease have yet to determine the underlying mechanisms of neurodegeneration. Hyperhomocysteinemia is associated with Alzheimers disease, and has been hypothesized to promote neurodegeneration, by inhibiting brain methylation activity. The aim of this work was to determine whether a combined folate, B12 and B6 dietary deficiency, would induce amyloid-beta overproduction, and to study the mechanisms linking vitamin deficiency, hyperhomocysteinemia and amyloidogenesis in TgCRND8 and 129Sv mice. We confirmed that B-vitamin deprivation induces hyperhomocysteinemia and imbalance of S-adenosylmethionine and S-adenosylhomocysteine. This effect was associated with PS1 and BACE up-regulation and amyloid-beta deposition. Finally, we detected intraneuronal amyloid-beta and a slight cognitive impairment in a water maze task at a pre-plaque age, supporting the hypothesis of early pathological function of intracellular amyloid. Collectively, these findings are consistent with the hypothesis that abnormal methylation in association with hyperhomocysteinemia may contribute to Alzheimers disease.
Journal of Biological Chemistry | 2001
Marco Lucarelli; Andrea Fuso; Roberto Strom; Sigfrido Scarpa
The molecular mechanisms underlying the activation of tissue-specific genes have not yet been fully clarified. We analyzed the methylation status of specific CCGG sites in the 5′-flanking region and exon 1 of myogenin gene, a very important myogenic differentiation factor. We demonstrated a loss of methylation, at the onset of C2C12 muscle cell line differentiation, limited to the CCGG site of myogenin 5′-flanking region, which was strongly correlated with the transcriptional activation of this gene and with myogenic differentiation. The same CCGG site was also found to be hypomethylated, in vivo, in embryonic mouse muscle (a myogenin-expressing tissue), as opposed to nonmuscle (nonexpressing) tissues that had a fully methylated site. In a C2C12-derived clone with enhanced myogenic ability, demethylation occurred within 2 h of induction of differentiation, suggesting the involvement of some active demethylation mechanism(s) that occur in the absence of DNA replication. Exposure to drugs that inhibit DNA methylation by acting on the S-adenosylmethionine metabolism produced a further reduction, to a few minutes, in the duration of the demethylation dynamics. These effects suggest that the final site-specific DNA methylation pattern of tissue-specific genes is defined through a continuous, relatively fast interplay between active DNA demethylation and re-methylation mechanisms.
Journal of Immunology | 2006
Anna Riccioli; Donatella Starace; Roberta Galli; Andrea Fuso; Sigfrido Scarpa; Fioretta Palombi; Paola De Cesaris; Elio Ziparo; Antonio Filippini
TLRs play a crucial role in early host defense against invading pathogens. In the seminiferous epithelium, Sertoli cells are the somatic nurse cells that mechanically segregate germ cell autoantigens by means of the blood-tubular barrier and create a microenvironment that protects germ cells from both interstitial and ascending invading pathogens. The objective of this study was to examine TLR expression and their functional responses to specific agonists in mouse Sertoli cells. We measured the expression of TLR2, TLR4, TLR5, and TLR6 mRNAs and confirmed by FACS analysis the presence of proteins TLR2 and TLR5 on which we focused our study. Stimulation of Sertoli cells with macrophage-activating lipopeptide-2, agonist of TLR2/TLR6, and with flagellin, agonist of TLR5, induces augmented secretion of the chemokine MCP-1. To assess the functional significance of MCP-1 production following TLR stimulation, conditioned medium from either macrophage-activating lipopeptide-2 or flagellin-treated Sertoli cells was tested for in vitro chemotaxis assay, and a significant increase of macrophage migration was observed in comparison with unstimulated conditioned medium. Moreover, we studied the role of NF-κB and of MAPKs in regulating TLR-mediated MCP-1 secretion by using inhibitors specific for each transduction pathway and we demonstrated a pivotal role of the IκB/NF-κB and JNK systems. In addition, TLR2/TLR6 and TLR5 stimulation induces increased ICAM-1 expression in Sertoli cells. Collectively, this study demonstrates the novel ability of Sertoli cells to potentially respond to a wide variety of bacteria through TLR stimulation.
Journal of Alzheimer's Disease | 2006
Sigfrido Scarpa; Rosaria A. Cavallaro; Fabrizio D'Anselmi; Andrea Fuso
Alzheimer disease (AD) is among the few diseases that may display high homocysteine (HCY) and low B12 and folate in blood. This observation has raised the suspect that amyloid-beta overproduction and accumulation, which may be the cause of the disease, could be due to the loss of epigenetic control in the expression of the genes involved in AbetaPP (amyloid-beta protein precursor) processing. We have shown, in cell culture, that two of the genes responsible for amyloid-beta production are controlled by the methylation of their promoters. The process is strictly related to S-adenosylmethionine (SAM) metabolism. SAM is a natural compound, mainly produced by the liver, which has been found at very low concentrations in AD brains. A further support to this thesis came from the observation that in elderly DNA methylations are consistently lower than in young and mid aged people. We are actually experimenting in transgenic mice the possibility to prevent or to arrest amyloid-beta accumulation, through SAM administration, and therefore its significance and the use of this drug for the treatment of the disease.
Journal of Nutritional Biochemistry | 2011
Andrea Fuso; Vincenzina Nicolia; Rosaria A. Cavallaro; Sigfrido Scarpa
Late-onset Alzheimers disease seems to be a multi-factorial disease with both genetic and non-genetic, environmental, possible causes. Recently, epigenomics is achieving a major role in Alzheimers research due to its involvement in different molecular pathways leading to neurodegeneration. Among the different epigenetic modifications, DNA methylation is one of the most relevant to the disease. We previously demonstrated that presenilin1 (PSEN1), a gene involved in amyloidogenesis, is modulated by DNA methylation in neuroblastoma cells and Alzheimers mice in an experimental model of nutritionally altered one-carbon metabolism. This alteration, obtained by nutritional deficiency of B vitamins (folate, B12 and B6) hampered S-adenosylmethionine (SAM)-dependent methylation reactions. The aim of the present paper was to investigate the regulation of DNA methylation machinery in response to hypomethylating (B vitamin deficiency) and hypermethylating (SAM supplementation) alterations of the one-carbon metabolism. We found that DNA methylases (DNMT1, 3a and 3b) and a putative demethylase (MBD2) were differently modulated, in line with the previously observed changes of PSEN1 methylation pattern in the same experimental conditions.
Neurobiology of Aging | 2012
Andrea Fuso; Vincenzina Nicolia; Laura Ricceri; Rosaria A. Cavallaro; Elisa Isopi; Franco Mangia; Maria Teresa Fiorenza; Sigfrido Scarpa
Methylation reactions linked to homocysteine in the one-carbon metabolism are increasingly elicited in Alzheimers disease, although the association of hyperhomocysteinemia and of low B vitamin levels with the disease is still debated. We previously demonstrated that hyperhomocysteinemia and DNA hypomethylation induced by B vitamin deficiency are associated with PSEN1 and BACE1 overexpression and amyloid production. The present study is aimed at assessing S-adenosylmethionine effects in mice kept under a condition of B vitamin deficiency. To this end, TgCRND8 mice and wild-type littermates were assigned to control or B vitamin deficient diet, with or without S-adenosylmethionine supplementation. We found that S-adenosylmethionine reduced amyloid production, increased spatial memory in TgCRND8 mice and inhibited the upregulation of B vitamin deficiency-induced PSEN1 and BACE1 expression and Tau phosphorylation in TgCRND8 and wild-type mice. Furthermore, S-adenosylmethionine treatment reduced plaque spreading independently on B vitamin deficiency. These results strengthen our previous observations on the possible role of one-carbon metabolism in Alzheimers disease, highlighting hyperhomocysteinemia-related mechanisms in dementia onset/progression and encourage further studies aimed at evaluating the use of S-adenosylmethionine as a potential candidate drug for the treatment of the disease.
Neurobiology of Aging | 2011
Andrea Fuso; Sigfrido Scarpa
The sporadic form of Alzheimer disease, late onset Alzheimers disease (LOAD), is a multifactorial disease; a strong link between nutritional and genetic factors with normal aging and dementia is supported by studies on nutrition, metabolism, and neurodegeneration. Specifically, the involvement of homocysteine (HCY) and its dietary determinants (vitamins B6, B12, and folate, besides methionine) in dementia has been a topic of intense investigation. In this Commentary we would like to highlight the role of 1-carbon metabolism in epigenetics and Alzheimers disease and evidence the co-involvement of this metabolism in amyloid and tau pathways.
Cell Cycle | 2010
Andrea Fuso; Giampiero Ferraguti; Francesco Grandoni; Raffaella Ruggeri; Sigfrido Scarpa; Roberto Strom; Marco Lucarelli
The dynamic changes and structural patterns of DNA methylation of genes without CpG islands are poorly characterized. The relevance of CpG to the non-CpG methylation equilibrium in transcriptional repression is unknown. In this work, we analyzed the DNA methylation pattern of the 5’-flanking of the myogenin gene, a positive regulator of muscle differentiation with no CpG island and low CpG density, in both C2C12 muscle satellite cells and embryonic muscle. Embryonic brain was studied as a non-expressing tissue. High levels of both CpG and non-CpG methylation were observed in non-expressing experimental conditions. Both CpG and non-CpG methylation rapidly dropped during muscle differentiation and myogenin transcriptional activation, with an active demethylation dynamics. Non-CpG demethylation occurred more rapidly than CpG demethylation. Demethylation spread from initially highly methylated short CpC-rich elements to a virtually unmethylated status. These short elements have a high CpC content and density, share some motifs and largely coincide with putative recognition sequences of some differentiation-related transcription factors. Our findings point to a dynamically controlled equilibrium between CpG and non-CpG active demethylation in the transcriptional control of tissue-specific genes. The short CpC-rich elements are new structural features of the methylation machinery, whose functions may include priming the complete demethylation of a transcriptionally crucial DNA region.