Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sigfus J Johnsen is active.

Publication


Featured researches published by Sigfus J Johnsen.


Nature | 2004

High-resolution record of Northern Hemisphere climate extending into the last interglacial period

Katrine K Andersen; Nobuhiko Azuma; Jean-Marc Barnola; Matthias Bigler; Pierre E. Biscaye; Nicolas Caillon; J. Chappellaz; Henrik Clausen; Dorthe Dahl-Jensen; Hubertus Fischer; Jacqueline Flückiger; Diedrich Fritzsche; Yoshiyuki Fujii; Kumiko Goto-Azuma; Karl Grönvold; Niels S. Gundestrup; M. Hansson; C. Huber; Christine S. Hvidberg; Sigfus J Johnsen; Ulf Jonsell; Jean Jouzel; Sepp Kipfstuhl; A. Landais; Markus Leuenberger; Reginald Lorrain; Valérie Masson-Delmotte; Heinrich Miller; Hideaki Motoyama; Hideki Narita

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 °C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 °C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.


Nature | 2004

Eight glacial cycles from an Antarctic ice core

Laurent Augustin; Carlo Barbante; Piers R F Barnes; Jean Marc Barnola; Matthias Bigler; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Barbara Delmonte; Gabrielle Dreyfus; Gaël Durand; S. Falourd; Hubertus Fischer; Jacqueline Flückiger; M. Hansson; Philippe Huybrechts; Gérard Jugie; Sigfus J Johnsen; Jean Jouzel; Patrik R Kaufmann; Josef Kipfstuhl; Fabrice Lambert; Vladimir Ya. Lipenkov; Geneviève C Littot; Antonio Longinelli; Reginald Lorrain; Valter Maggi; Valérie Masson-Delmotte; Heinz Miller

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.


Nature | 2006

One-to-one coupling of glacial climate variability in Greenland and Antarctica.

Carlo Barbante; Jean-Marc Barnola; Silvia Becagli; J. Beer; Matthias Bigler; Claude F. Boutron; Thomas Blunier; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Maxime Debret; Barbara Delmonte; Dorothee Dick; S. Falourd; S. H. Faria; Urs Federer; Hubertus Fischer; Johannes Freitag; Andreas Frenzel; Diedrich Fritzsche; Felix Fundel; Paolo Gabrielli; Vania Gaspari; Rainer Gersonde; Wolfgang Graf; D. Grigoriev; Ilka Hamann; M. Hansson; George R. Hoffmann

Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.


Journal of Quaternary Science | 1998

An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group.

Svante Björck; Mike Walker; Les C. Cwynar; Sigfus J Johnsen; Karen-Luise Knudsen; J. John Lowe; Barbara Wohlfarth

It is suggested that the GRIP Greenland ice-core should constitute the stratotype for the Last Termination. Based on the oxygen isotope signal in that core, a new event stratigraphy spanning the time interval from ca. 22.0 to 11.5 k GRIP yr BP (ca. 19.0-10.0 k 14 C yr BP) is proposed for the North Atlantic region. This covers the period from the Last Glacial Maximum, through Termination 1 of the deep-ocean record, to the Pleistocene-Holocene boundary, and encompasses the Last Glacial Late-glacial of the traditional northwest European stratigraphy. The isotopic record for this period is divided into two stadial episodes, Greenland Stadials 1 (GS-1) and 2 (GS-2), and two interstadial events, Greenland Interstadials 1 (GI-1) and 2 (GI-2). In addition, GI-1 and GS-2 are further subdivided into shorter episodes. The event stratigraphy is equally applicable to ice-core, marine and terrestrial records and is considered to be a more appropriate classificatory scheme than the terrestrially based radiocarbon-dated chronostratigraphy that has been used hitherto.


Nature | 1998

Asynchrony of Antarctic and Greenland climate change during the last glacial period

T. Blunier; J. Chappellaz; Jakob Schwander; A. Dällenbach; Bernhard Stauffer; T. F. Stocker; Dominique Raynaud; Jean Jouzel; Henrik Clausen; C. U. Hammer; Sigfus J Johnsen

A central issue in climate dynamics is to understand how the Northern and Southern hemispheres are coupled during climate events. The strongest of the fast temperature changes observed in Greenland (so-called Dansgaard–Oeschger events) during the last glaciation have an analogue in the temperature record from Antarctica. A comparison of the global atmospheric concentration of methane as recorded in ice cores from Antarctica and Greenland permits a determination of the phase relationship (in leads or lags) of these temperature variations. Greenland warming events around 36 and 45 kyr before present lag their Antarctic counterpart by more than 1 kyr. On average, Antarctic climate change leads that of Greenland by 1–2.5 kyr over the period 47–23 kyr before present.


Science | 2008

High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years

Jørgen Peder Steffensen; Katrine K Andersen; Matthias Bigler; Henrik Clausen; Dorthe Dahl-Jensen; Hubertus Fischer; Kumiko Goto-Azuma; M. Hansson; Sigfus J Johnsen; Jean Jouzel; Valerie Masson-Delmotte; Trevor James Popp; Sune Olander Rasmussen; Regine Röthlisberger; Urs Ruth; Bernhard Stauffer; Marie-Louise Siggaard-Andersen; A. E. Sveinbjörnsdottir; Anders Svensson; James W. C. White

The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.


Journal of Geophysical Research | 1997

Validity of the temperature reconstruction from water isotopes in ice cores

Jean Jouzel; Richard B. Alley; Kurt M. Cuffey; W. Dansgaard; Pieter Meiert Grootes; George R. Hoffmann; Sigfus J Johnsen; Randal D. Koster; David A. Peel; Christopher A. Shuman; M. Stievenard; Minze Stuiver; James W. C. White

Well-documented present-day distributions of stable water isotopes (HDO and H218O) show the existence, in middle and high latitudes, of a linear relationship between the mean annual isotope content of precipitation (δD and δ18O) and the mean annual temperature at the precipitation site. Paleoclimatologists have used this relationship, which is particularly well obeyed over Greenland and Antarctica, to infer paleotemperatures from ice core data. There is, however, growing evidence that spatial and temporal isotope/surface temperature slopes differ, thus complicating the use of stable water isotopes as paleothermometers. In this paper we review empirical estimates of temporal slopes in polar regions and relevant information that can be inferred from isotope models: simple, Rayleigh-type distillation models and (particularly over Greenland) general circulation models (GCMs) fitted with isotope tracer diagnostics. Empirical estimates of temporal slopes appear consistently lower than present-day spatial slopes and are dependent on the timescale considered. This difference is most probably due to changes in the evaporative origins of moisture, changes in the seasonality of the precipitation, changes in the strength of the inversion layer, or some combination of these changes. Isotope models have not yet been used to evaluate the relative influences of these different factors. The apparent disagreement in the temporal and spatial slopes clearly makes calibrating the isotope paleothermometer difficult. Nevertheless, the use of a (calibrated) isotope paleothermometer appears justified; empirical estimates and most (though not all) GCM results support the practice of interpreting ice core isotope records in terms of local temperature changes.


Earth and Planetary Science Letters | 1995

Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments

Karl Grönvold; Niels Oskarsson; Sigfus J Johnsen; Henrik Clausen; Claus U. Hammer; Gerard C. Bond; Edouard Bard

Four previously known ash layers (Ash Zones I and II, Saksunarvatn and the Settlement layer) all originating in Iceland, have been identified in the Central Greenland ice core GRIP. This correlation of the ash between the different environments is achieved by comparison of the chemical composition of glass shards from the ash. This establishes and confirms detailed correlations between the different types of depositional records and the absolute dating of the younger part of the ice core by counting annual layers dates the eruptions accurately. A precise connection with dates obtained by14C beyond the range of dendrochronology is established which provides an excellent confirmation of230Th-234U dates from corals. Four additional Icelandic ash layers have also been identified in the core but not yet correlated with known ash deposits.


Journal of Geophysical Research | 2006

A synchronized dating of three Greenland ice cores throughout the Holocene

B. M. Vinther; Henrik Clausen; Sigfus J Johnsen; Sune Olander Rasmussen; Katrine K Andersen; S. L. Buchardt; Dorthe Dahl-Jensen; Inger K Seierstad; Marie-Louise Siggaard-Andersen; Jørgen Peder Steffensen; Anders Svensson; Jesper Olsen; Jan Heinemeier

As part of the effort to create the new Greenland Ice Core Chronology 2005 (GICC05) a synchronized stratigraphical timescale for the Holocene parts of the DYE- 3, GRIP and NGRIP ice cores is made by using volcanic reference horizons in electri- cal conductivity measurements to match the cores. The main annual layer counting is carried out on the most suited records only, exploit- ing that the three ice cores have been drilled at locations with different climatic con- ditions and differences in ice flow. However, supplemental counting on data from all cores has been performed between each set of reference horizons in order to verify the valid- ity of the match. After the verification, the main dating is transferred to all records us- ing the volcanic reference horizons as tie points. An assessment of the mean annual layer thickness in each core section confirms that the new synchronized dating is consistent for all three cores. The data used for the main annual layer counting of the past 7900 years are the DYE- 3, GRIP and NGRIP stable isotope records. As the high accumulation rate at the DYE- 3 drill site makes the seasonal cycle in the DYE-3 stable isotopes very resistant to firn diffusion, an effort has been made to extend the DYE-3 Holocene record. The new syn- chronized dating relies heavily on this record of �75,000 stable isotope samples. The dat- ing of the early Holocene consists of an already established part of GICC05 for GRIP and NGRIP which has now been transferred to the DYE-3 core. GICC05 dates the Younger Dryas termination, as defined from deuterium excess, to 11,703 b2k; 130 years earlier than the previous GRIP dating.


Journal of Geophysical Research | 1997

The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability

Sigfus J Johnsen; Henrik Clausen; W. Dansgaard; Niels S. Gundestrup; Claus U. Hammer; Uffe Andersen; Katrine K Andersen; Christine S. Hvidberg; Dorthe Dahl-Jensen; Jørgen Peder Steffensen; Hitoshi Shoji; Arny E. Sveinbjornsdottir; James W. C. White; Jean Jouzel; David A. Fisher

Over 70,000 samples from the 3029-m-long Greenland Ice Core Project (GRIP) ice core drilled on the top of the Greenland Ice Sheet (Summit) have been analyzed for δ8O. A highly detailed and continuous δ8O profile has thus been obtained and is discussed in terms of past temperatures in Greenland. We also discuss a three-core stacked annual δ8O profile for the past 917 years. The short-term (<50 years) variability of the annual δ8O signal is found to be 1‰ in the Holocene, and estimates for the coldest parts of the last glacial are 3‰ or higher. These data also provide insights into possible disturbances of the stratigraphic layering in the core which seems to be sound down to the onset of the Eemian. Spectral analysis of highly detailed sequences of the profile helps determine the smoothing of the δ8O signal, which for the Holocene ice is found to be considerably stronger than expected. We suggest this is due to a process involving diffusion of water molecules along crystal boundaries in the recrystallizing ice matrix. Deconvolution techniques were employed for restoring with great confidence the highly attenuated annual δ8O signal in the Holocene. We confirm earlier findings of dramatic temperature changes in Greenland during the last glacial cycle. Abrupt and strong climatic shifts are also found within the Eem/Sangamon Interglaciation, which is normally recorded as a period of warm and stable climate in lower latitudes. The stratigraphic continuity of the Eemian layers is consequently discussed in section 3 of this paper in terms of all pertinent data which we are not able to reconcile.

Collaboration


Dive into the Sigfus J Johnsen's collaboration.

Top Co-Authors

Avatar

Jean Jouzel

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Marco Spurk

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar

Henrik Clausen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valérie Masson-Delmotte

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

B. M. Vinther

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge