Signe Helbo
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Signe Helbo.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Signe Helbo; Sylvia Dewilde; Daryl R. Williams; Herald Berghmans; Michael Berenbrink; Andrew R. Cossins; Angela Fago
Because of a recent whole genome duplication, the hypoxia-tolerant common carp and goldfish are the only vertebrates known to possess two myoglobin (Mb) paralogs. One of these, Mb1, occurs in oxidative muscle but also in several other tissues, including capillary endothelial cells, whereas the other, Mb2, is a unique isoform specific to brain neurons. To help understand the functional roles of these diverged isoforms in the tolerance to severe hypoxia in the carp, we have compared their O(2) equilibria, carbon monoxide (CO) and O(2) binding kinetics, thiol S-nitrosation, nitrite reductase activities, and peroxidase activities. Mb1 has O(2) affinity and nitrite reductase activity comparable to most vertebrate muscle Mbs, consistent with established roles for Mbs in O(2) storage/delivery and in maintaining nitric oxide (NO) homeostasis during hypoxia. Both Mb1 and Mb2 can be S-nitrosated to similar extent, but without oxygenation-linked allosteric control. When compared with Mb1, Mb2 displays faster O(2) and CO kinetics, a lower O(2) affinity, and is slower at converting nitrite into NO. Mb2 is therefore unlikely to be primarily involved in either O(2) supply to mitochondria or the generation of NO from nitrite during hypoxia. However, Mb2 proved to be significantly faster at eliminating H(2)O(2,) a major in vivo reactive oxygen species (ROS), suggesting that this diverged Mb isoform may have a specific protective role against H(2)O(2) in the carp brain. This property might be of particular significance during reoxygenation following extended periods of hypoxia, when production of H(2)O(2) and other ROS is highest.
The Journal of Experimental Biology | 2010
Claus Lunde Pedersen; Serena Faggiano; Signe Helbo; Hans Gesser; Angela Fago
SUMMARY The roles of nitric oxide synthase activity (NOS), nitrite and myoglobin (Mb) in the regulation of myocardial function during hypoxia were examined in trout and goldfish, a hypoxia-intolerant and hypoxia-tolerant species, respectively. We measured the effect of NOS inhibition, adrenaline and nitrite on the O2 consumption rate and isometric twitch force development in electrically paced ventricular preparations during hypoxia, and measured O2 affinity and nitrite reductase activity of the purified heart Mbs of both species. Upon hypoxia (9% O2), O2 consumption and developed force decreased in both trout and goldfish myocardium, with trout showing a significant increase in the O2 utilization efficiency, i.e. the ratio of twitch force to O2 consumption, suggesting an increased anaerobic metabolism. NOS inhibition enhanced myocardial O2 consumption and decreased efficiency, indicating that mitochondrial respiration is under a tone of NOS-produced NO. When trout myocardial twitch force and O2 consumption are enhanced by adrenaline, this NO tone disappears. Consistent with its conversion to NO, nitrite reduced O2 consumption and increased myocardial efficiency in trout but not in goldfish. Such a difference correlates with the lower O2 affinity measured for trout Mb that would increase the fraction of deoxygenated heme available to catalyze the reduction of nitrite to NO. Whereas low-affinity trout Mb would favor O2 diffusion within cardiomyocytes at high in vivo O2 tensions, goldfish Mb having higher O2 affinity and higher nitrite reductase activity appears better suited to facilitate O2 diffusion and nitrite reduction in the heart during severe hypoxia, a condition particularly well tolerated by this species.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012
Angela Fago; Frank Bo Jensen; Bruno Tota; Martin Feelisch; Kenneth R. Olson; Signe Helbo; Sjannie Lefevre; Daniele Mancardi; Anna Palumbo; Guro K. Sandvik; Nini Skovgaard
Hydrogen sulfide (H(2)S), nitric oxide (NO) and nitrite (NO(2)(-)) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting of the Society for Experimental Biology in 2011 in Glasgow. It also highlights the need and potential for a comparative approach of study and collaborative effort to identify potential link(s) between the signaling pathways involving NO, nitrite and H(2)S in the whole-body responses to hypoxia.
Journal of Inorganic Biochemistry | 2012
Barry D. Howes; Signe Helbo; Angela Fago; Giulietta Smulevich
Rainbow trout myoglobin (Mb) is characterized by an unusually low affinity for oxygen, having a P(50) of 4.92±0.29 mm Hg at 25 °C which is the highest ever reported for any vertebrate Mb at the same temperature (Helbo and Fago, (2011) Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R101-R108). In order to gain insight into the structural factors of the heme pocket that may be important determinants for this atypical oxygen affinity, we have carried out an electronic absorption and resonance Raman characterization of the ferric and ferrous protein with and without exogenous ligands (O(2), CO, F(-)) and compared the results with those of other Mbs. While the ν(Fe-His) stretch appears at a frequency similar to other vertebrate Mbs, the resonance Raman frequencies of the Fe-ligand stretching modes reveal significant variations in the interaction of iron-bound ligands with distal residues. In particular, the spectroscopic characterization highlights two exceptional properties of rainbow trout Mb, a significantly higher level of reversed heme and reduced hydrogen bonding interactions between ligands and the distal HisE7 residue compared with other Mbs. The weakening of the hydrogen bond interaction is proposed to be the primary cause of the significantly reduced oxygen affinity.
Journal of Sports Sciences | 2015
A. Guadalupe-Grau; Ulla Plenge; Signe Helbo; Marianne Kristensen; Peter Riis Andersen; Angela Fago; Bo Belhage; Flemming Dela; Jørn Wulff Helge
Abstract The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.3%) over 8 weeks. The participants performed two graded cycle ergometer exercise tests before and after the intervention where VO2max and maximal fat oxidation were measured. Biopsies of the vastus lateralis muscle were obtained before and after the intervention. Recombinant erythropoietin treatment increased mitochondrial O2 flux during ADP stimulated state 3 respiration in the presence of complex I and II substrates (malate, glutamate, pyruvate, succinate) with additional electron input from β-oxidation (octanoylcarnitine) (from 60 ± 13 to 87 ± 24 pmol · s−1 · mg−1 P < 0.01). β-hydroxy-acyl-CoA-dehydrogenase activity was higher after treatment (P < 0.05), whereas citrate synthase activity also tended to increase (P = 0.06). Total myoglobin increased by 16.5% (P < 0.05). Capillaries per muscle area tended to increase (P = 0.07), whereas capillaries per fibre as well as the total expression of vascular endothelial growth factor remained unchanged. Whole body maximal fat oxidation was not increased after treatment. Eight weeks of recombinant erythropoietin treatment increases mitochondrial fatty acid oxidation capacity and myoglobin concentration without any effect on whole body maximal fat oxidation.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2014
Christian Damsgaard; Inge Findorf; Signe Helbo; Yigit Kocagoz; Rasmus Buchanan; Do Thi Thanh Huong; Roy E. Weber; Angela Fago; Mark Bayley; Tobias Wang
The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles.
PLOS ONE | 2014
Signe Helbo; Andrew J. Gow; Amna Jamil; Barry D. Howes; Giulietta Smulevich; Angela Fago
The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O2 affinity (P 50 = 2.7 torr) that was increased by S-nitrosation (P 50 = 1.7 torr), whereas in tuna Mb, O2 affinity (P 50 = 0.9 torr) was independent of S-nitrosation. O2 dissociation rates (k off) of trout and salmon Mbs were not altered when Cys were in the SNO or N-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O2 affinity by raising the O2 association rate (k on). Taken together, these results indicate that O2-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O2 entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb in vivo is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2013
Signe Helbo; Angela Fago; Hans Gesser
Myoglobin (Mb) plays a well-established role in facilitated O2 diffusion to sustain mitochondrial O2 consumption during hypoxia in the mammalian heart. To better understand the function of Mb in the fish heart, we have measured the effects of adding 20% carbon monoxide (CO), which inhibits Mb function, compared to inert 20% N2 on the O2 consumption and twitch force in hypoxic rainbow trout (Oncorhynchus mykiss) ventricle ring preparations. Results showed that O2 consumption was significantly reduced upon addition of CO, whereas twitch force was not affected. Control experiments at 40% CO did not decrease O2 consumption further, showing that CO was not inhibiting cytochrome c oxidase in the mitochondria. Because myocardial O2 consumption can be depressed by endogenous nitric oxide (NO) in the trout myocardium and because Mb is a scavenger of NO, CO inhibition experiments were also made in the presence of the NO synthase inhibitor, asymmetric dimethylarginine (ADMA). O2 consumption decreased to a similar extent upon CO addition, regardless of NO synthase inhibition, indicating that under hypoxic conditions Mb-dependent NO scavenging plays a minor role. Taken together, these results show that O2 consumption of the hypoxic rainbow trout heart is dependent on the function of Mb as intracellular O2 carrier.
Medicine and Science in Sports and Exercise | 2017
Thomas Morville; Mads Rosenkilde; Thor Munch-Andersen; Peter Riis Andersen; Katja KjÆr GroenbÆk; Signe Helbo; Marianne Kristensen; Andreas Vigelsø Hansen; Nick Mattsson; Hanne Rasmusen; A. Guadalupe-Grau; Angela Fago; Christina Neigaard Hansen; Brigitte Twelkmeyer; Jesper Løvind Andersen; Flemming Dela; Jørn Wulff Helge
Introduction/Purpose Fat metabolism and muscle adaptation was investigated in six older trained men (age, 61 ± 4 yr; V˙O2max, 48 ± 2 mL·kg−1·min−1) after repeated prolonged exercise). Methods A distance of 2706 km (1681 miles) cycling was performed over 14 d, and a blood sample and a muscle biopsy were obtained at rest after an overnight fast before and 30 h after the completion of the cycling. V˙O2max and maximal fat oxidation were measured using incremental exercise tests. HR was continuously sampled during cycling to estimate exercise intensity. Results The daily duration of exercise was 10 h and 31 ± 37 min, and the mean intensity was 53% ± 1% of V˙O2max. Body weight remained unchanged. V˙O2max and maximal fat oxidation rate decreased by 6% ± 2% (P = 0.04) and 32% ± 8% (P < 0.01), respectively. The exercise intensity that elicits maximal fat oxidation was not significantly decreased. Plasma free fatty acid (FA) concentration decreased (P < 0.002) from 500 ± 77 &mgr;mol·L−1 to 160 ± 38 &mgr;mol·L−1. Plasma glucose concentration as well as muscle glycogen, myoglobin, and triacylglycerol content remained unchanged. Muscle citrate synthase and ß-hydroxy-acyl-CoA-dehydrogenase activities were unchanged, but the protein expression of HKII, GLUT4, and adipose triacylglycerol lipase were significantly increased. Conclusions Overall, the decreased maximal fat oxidation was probably due to lower exogenous plasma fatty acid availability and the muscle adaptation pattern indicates an increased glucose transport capacity and an increased muscle lipolysis capacity supporting an increased contribution of exogenous glucose and endogenous fat during exercise.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015
Signe Helbo; Amanda Bundgaard; Angela Fago
Differences between species in the oxygen (O2) affinity (P50) of myoglobin (Mb) may serve to fine tune O2 supply to cardiac and skeletal muscle in ectotherms. In support of this view, it has been shown that fish Mb O2 affinities differ between species when measured at the same temperature, but are in fact similar when adjusted for in vivo muscle temperatures, most likely to maintain intracellular O2 delivery in species adapted to different environments. It is unknown whether similar adaptations exist in the O2 affinity of Mb from reptiles, despite this group of ectothermic vertebrates displaying great variation in the tolerance to both temperature and hypoxia. In this study, we have purified Mb from muscle tissues of three reptilian species (turtle, tortoise and alligator) with different lifestyles. We have measured O2 binding characteristics and autoxidation rates of the three Mbs and measured the effects of temperature, lactate and blocking of reactive thiols on the O2 affinity of turtle Mb. Our data show that, at a constant temperature, reptilian Mbs have similar O2 affinities that are lower than those of mammalian Mbs, which may optimize intracellular O2 transport at lower body temperatures. Reptilian Mbs have lower autoxidation rates than both mammalian and fish Mbs, which may be beneficial during oxidative stress. Furthermore, the O2 affinity of turtle Mb is without allosteric control and independent of either lactate or thiol covalent modification. This study reveals some common adaptive patterns in the temperature-dependent regulation of Mb oxygenation in vertebrates.