Sigrid Hatse
Rega Institute for Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sigrid Hatse.
FEBS Letters | 2002
Sigrid Hatse; Katrien Princen; Gary J. Bridger; Erik De Clercq; Dominique Schols
This study was undertaken to demonstrate the unique specificity of the chemokine receptor CXCR4 antagonist AMD3100. Calcium flux assays with selected chemokine/cell combinations, affording distinct chemokine receptor specificities, revealed no interaction of AMD3100 with any of the chemokine receptors CXCR1 through CXCR3, or CCR1 through CCR9. In contrast, AMD3100 potently inhibited CXCR4‐mediated calcium signaling and chemotaxis in a concentration‐dependent manner in different cell types. Also, AMD3100 inhibited stromal cell‐derived factor (SDF)‐1‐induced endocytosis of CXCR4, but did not affect phorbol ester‐induced receptor internalization. Importantly, AMD3100 by itself was unable to elicit intracellular calcium fluxes, to induce chemotaxis, or to trigger CXCR4 internalization, indicating that the compound does not act as a CXCR4 agonist. Specific small‐molecule CXCR4 antagonists such as AMD3100 may play an important role in the treatment of human immunodeficiency virus infections and many other pathological processes that are dependent on SDF‐1/CXCR4 interactions (e.g. rheumatoid arthritis, atherosclerosis, asthma and breast cancer metastasis).
Journal of Immunology | 2001
Patrick Matthys; Sigrid Hatse; Kurt Vermeire; Anja Wuyts; Gary J. Bridger; Geoffrey W. Henson; Erik De Clercq; Alfons Billiau; Dominique Schols
Autoimmune collagen-induced arthritis (CIA) in IFN-γR-deficient DBA/1 mice was shown to be reduced in severity by treatment with the bicyclam derivative AMD3100, a specific antagonist of the interaction between the chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4. The beneficial effect of the CXCR4 antagonist was demonstrable when treatment was initiated between the time of immunization and appearance of the first symptoms. Treatment also reduced the delayed-type hypersensitivity response to the autoantigen, collagen type II. These observations are indicative of an action on a late event in the pathogenesis, such as chemokine-mediated attraction of leukocytes toward joint tissues. The notion of SDF-1 involvement was further supported by the observation that exogenous SDF-1 injected in periarthritic tissue elicited an inflammatory response that could be inhibited by AMD3100. The majority of leukocytes harvested from inflamed joints of mice with CIA were found to be Mac-1+ and CXCR4+, and AMD3100 was demonstrated to interfere specifically with chemotaxis and Ca2+ mobilization induced in vitro by SDF-1 on Mac-1+/CXCR4+ splenocytes. We conclude that SDF-1 plays a central role in the pathogenesis of murine CIA, by attracting Mac-1+/CXCR4+ cells to the inflamed joints.
Current Pharmaceutical Design | 2010
Sandra Liekens; Dominique Schols; Sigrid Hatse
Chemokines are key players in the attraction and activation of leukocytes and are thus implicated in the recruitment of immune cells at sites of infection and/or inflammation. They exert their action by binding to seven-transmembrane G protein-coupled receptors. The chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 represents the single natural ligand for the chemokine receptor CXCR4. CXCL12 possesses angiogenic properties and is involved in the outgrowth and metastasis of CXCR4-expressing tumors and in certain inflammatory autoimmune disorders, such as rheumatoid arthritis. CXCR4 expression on tumor cells is upregulated by hypoxia and angiogenic factors, such as vascular endothelial growth factor (VEGF). CXCR4 also acts as a co-receptor for entry of human immunodeficiency virus (HIV) in CD4(+) T cells. Finally, CXCL12/CXCR4 interactions were shown to play an important role in the migration of hematopoietic stem cells and their progenitors from, and their retention within, the bone marrow, a site characterized by high CXCL12 expression. As such, CXCR4 inhibitors may be utilized to inhibit HIV-1 infection, tumor growth and metastasis and to mobilize hematopoietic stem cells from the bone marrow in the circulation, where they can be collected for autologous stem cell transplantation. Here, we discuss the different aspects of CXCL12/CXCR4 biology as well as the development and anti-cancer/stem cell mobilizing activity of CXCR4 antagonists.
Journal of Biological Chemistry | 2005
Jan Balzarini; Kristel Van Laethem; Sigrid Hatse; Matheus Froeyen; Willy J. Peumans; Els J. M. Van Damme; Dominique Schols
Mannose-binding proteins derived from several plants (i.e. Hippeastrum hybrid and Galanthus nivalis agglutinin) or prokaryotes (i.e. cyanovirin-N) inhibit human immunodeficiency virus (HIV) replication and select for drug-resistant viruses that show profound deletion of N-glycosylation sites in the GP120 envelope (Balzarini, J., Van Laethem, K., Hatse, S., Vermeire, K., De Clercq, E., Peumans, W., Van Damme, E., Vandamme, A.-M., Bolmstedt, A., and Schols, D. (2004) J. Virol. 78, 10617-10627; Balzarini, J., Van Laethem, K., Hatse, S., Froeyen, M., Van Damme, E., Bolmstedt, A., Peumans, W., De Clercq, E., and Schols, D. (2005) Mol. Pharmacol. 67, 1556-1565). Here we demonstrated that the N-acetylglucosamine-binding protein from Urtica dioica (UDA) prevents HIV entry and eventually selects for viruses in which conserved N-glycosylation sites in GP120 were deleted. In contrast to the mannose-binding proteins, which have a 50-100-fold decreased antiviral activity against the UDA-exposed mutant viruses, UDA has decreased anti-HIV activity to a very limited extent, even against those mutant virus strains that lack at least 9 of 22 (∼40%) glycosylation sites in their GP120 envelope. Therefore, UDA represents the prototype of a new conceptual class of carbohydrate-binding agents with an unusually specific and targeted drug resistance profile. It forces HIV to escape drug pressure by deleting the indispensable glycans on its GP120, thereby obligatorily exposing previously hidden immunogenic epitopes on its envelope.
Aaps Pharmsci | 2002
Janardhan Sampath; Masashi Adachi; Sigrid Hatse; Lieve Naesens; Jan Balzarini; Robin M. Flatley; Larry H. Matherly; John D. Schuetz
Nucleotide efflux (especially cyclic nucleotides) from a variety of mammalian tissues, bacteria, and lower eukaryotes has been studied for several decades. However, the molecular identity of these nucleotide efflux transporters remained elusive, despite extensive knowledge of their kinetic properties and inhibitor profiles. Identification of the subfamily of adenosine triphosphate (ATP) binding cassette transporters, multidrug resistance protein (MRP) subfamily, permitted rapid advances because some recently identified MRP family members transport modified nucleotide analogs (ie, chemotherapeutic agents). We first identified, MRP4, based on its ability to efflux antiretroviral compounds, such as azidothymidine monophosphate (AZT-MP) and 9-(2-phosphonyl methoxyethyl) adenine (PMEA), in drug-resistant and also in transfected cell lines. MRP5, a close structural homologue of MRP4 also transported PMEA. MRP4 and MRP5 confer resistance to cytotoxic thiopurine nucleotides, and we demonstrate MRP4 expression varies among acute lymphoblastic leukemias, suggesting this as a factor in response to chemotherapy with these agents. The ability of MRP4 and MRP5 to transport 3,5-cyclic adenosine monophosphate (cAMP) and 3,5-cyclic guanosine monophosphate (cGMP) suggests they may play a biological role in cellular signaling by these nucleotides. Finally, we propose that MRP4 may also play a role in hepatic bile acid homeostasis because loss of the main bile acid efflux transporter, sister of P-glycoprotein (SPGP) aka bile-salt export pump (BSEP), leads to a strong compensatory upregulation in MRP4 expression. Cumulatively, these studies reveal that the ATP-binding cassette (ABC) transporters MRP4 and MRP5 have a unique role in biology and in chemotherapeutic response.
Journal of Virology | 2004
Jan Balzarini; Kristel Van Laethem; Sigrid Hatse; Kurt Vermeire; Erik De Clercq; Willy J. Peumans; Els J. M. Van Damme; Anne-Mieke Vandamme; Anders Böhlmstedt; Dominique Schols
ABSTRACT The mannose-specific plant lectins from the Amaryllidaceae family (e.g., Hippeastrum sp. hybrid and Galanthus nivalis) inhibit human immunodeficiency virus (HIV) infection of human lymphocytic cells in the higher nanogram per milliliter range and suppress syncytium formation between persistently HIV type 1 (HIV-1)-infected cells and uninfected CD4+ T cells. These lectins inhibit virus entry. When exposed to escalating concentrations of G. nivalis and Hippeastrum sp. hybrid agglutinin, a variety of HIV-1(IIIB) strains were isolated after 20 to 40 subcultivations which showed a decreased sensitivity to the plant lectins. Several amino acid changes in the envelope glycoprotein gp120, but not in gp41, of the mutant virus isolates were observed. The vast majority of the amino acid changes occurred at the N glycosylation sites and at the S or T residues that are part of the N glycosylation motif. The degree of resistance to the plant lectins was invariably correlated with an increasing number of mutated glycosylation sites in gp120. The nature of these mutations was entirely different from that of mutations that are known to appear in HIV-1 gp120 under the pressure of other viral entry inhibitors such as dextran sulfate, bicyclams (i.e., AMD3100), and chicoric acid, which also explains the lack of cross-resistance of plant lectin-resistant viruses to any other HIV inhibitor including T-20 and the blue-green algae (cyanobacteria)-derived mannose-specific cyanovirin. The plant lectins represent a well-defined class of anti-HIV (microbicidal) drugs with a novel HIV drug resistance profile different from those of other existing anti-HIV drugs.
Journal of Biological Chemistry | 2007
Mette M. Rosenkilde; Lars-Ole Gerlach; Sigrid Hatse; Renato T. Skerlj; Dominique Schols; Gary J. Bridger; Thue W. Schwartz
AMD3465 is a novel, nonpeptide CXCR4 antagonist and a potent inhibitor of HIV cell entry in that one of the four-nitrogen cyclam rings of the symmetrical, prototype bicyclam antagonist AMD3100 has been replaced by a two-nitrogen N-pyridinylmethylene moiety. This substitution induced an 8-fold higher affinity as determined against 125I-12G5 monoclonal CXCR4 antibody binding, and a 22-fold higher potency in inhibition of CXCL12-induced signaling through phosphatidylinositol accumulation. Mutational mapping of AMD3465 and a series of analogs of this in a library of 23 mutants covering the main ligand binding pocket of the CXCR4 receptor demonstrated that the single cyclam ring of AMD3465 binds in the pocket around AspIV:20 (Asp171), in analogy with AMD3100, whereas the N-pyridinylmethylene moiety mimics the other cyclam ring through interactions with the two acidic anchor-point residues in transmembrane (TM)-VI (AspVI:23/Asp262) and TM-VII (GluVII:06/Glu288). Importantly, AMD3465 has picked up novel interaction sites, for example, His281 located at the interface of extracellular loop 3 and TM-VII and HisIII:05 (His113) in the middle of the binding pocket. It is concluded that the simple N-pyridinylmethylene moiety of AMD3465 substitutes for one of the complex cyclam moieties of AMD3100 through an improved and in fact expanded interaction pattern mainly with residues located in the extracellular segments of TM-VI and -VII of the CXCR4 receptor. It is suggested that the remaining cyclam ring of AMD3465, which ensures the efficacious blocking of the receptor, in a similar manner can be replaced by chemical moieties allowing for, for example, oral bioavailability.
Journal of Virology | 2007
Jan Balzarini; Kristel Van Laethem; Dirk Daelemans; Sigrid Hatse; Antonella Bugatti; Marco Rusnati; Yasuhiro Igarashi; Toshikazu Oki; Dominique Schols
ABSTRACT Pradimicin A (PRM-A), an antifungal nonpeptidic benzonaphtacenequinone antibiotic, is a low-molecular-weight (molecular weight, 838) carbohydrate binding agent (CBA) endowed with a selective inhibitory activity against human immunodeficiency virus (HIV). It invariably inhibits representative virus strains of a variety of HIV-1 clades with X4 and R5 tropisms at nontoxic concentrations. Time-of-addition studies revealed that PRM-A acts as a true virus entry inhibitor. PRM-A specifically interacts with HIV-1 gp120 and efficiently prevents virus transmission in cocultures of HUT-78/HIV-1 and Sup T1 cells. Upon prolonged exposure of HIV-1-infected CEM cell cultures, PRM-A drug pressure selects for mutant HIV-1 strains containing N-glycosylation site deletions in gp120 but not gp41. A relatively long exposure time to PRM-A is required before drug-resistant virus strains emerge. PRM-A has a high genetic barrier, since more than five N-glycosylation site deletions in gp120 are required to afford moderate drug resistance. Such mutated virus strains keep full sensitivity to the other known clinically used anti-HIV drugs. PRM-A represents the first prototype compound of a nonpeptidic CBA lead and, together with peptide-based lectins, belongs to a conceptually novel type of potential therapeutics for which drug pressure results in the selection of glycan deletions in the HIV gp120 envelope.
Journal of Virology | 2004
Katrien Princen; Sigrid Hatse; Kurt Vermeire; Stefano Aquaro; Erik De Clercq; Lars-Ole Gerlach; Mette M. Rosenkilde; Thue W. Schwartz; Renato T. Skerlj; Gary J. Bridger; Dominique Schols
ABSTRACT Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC50] ranging from 1.2 to 26.5 μM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC50, 1.8 to 7.3 μM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca2+ signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca2+ flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca2+ signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca2+ signaling by itself at concentrations up to 400 μM. In freshly isolated monocytes, AMD3451 inhibited the Ca2+ flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.
Cytometry Part A | 2003
Katrien Princen; Sigrid Hatse; Kurt Vermeire; Erik De Clercq; Dominique Schols
The chemokine receptors CXCR4 and CCR5 are the main coreceptors for human immunodeficiency virus (HIV) 1 to enter its target cells. The antiviral activity of their natural ligands (stromal cell‐derived factor 1 [SDF‐1], regulated on activation normal T‐cell expressed and secreted, (RANTES) and macrophage inflammatory proteins 1α and 1β, MIP‐1α and MIP‐1β) and the finding that individuals deficient in CCR5 are relatively resistant to HIV infection led to the concept that chemokine receptor antagonists can play an important role in anti‐HIV therapy. AMD3100, the prototype compound of the bicyclams, is one of the most potent and selective CXCR4 antagonists described to date. The search for new chemokine receptor antagonists involves the evaluation of compounds for their ability to block the specific chemokine‐induced transient intracellular Ca2+ flux. We evaluated two cell‐based‐fluorescent methods with the use of the Fluorometric Imaging Plate Reader (FLIPR) system and a flow cytometric assay to measure the SDF‐1–induced intracellular Ca2+ mobilization via CXCR4. Both assay systems were compared for their sensitivity, advantages, and system‐dependent limitations.