Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sigurd Lenzen is active.

Publication


Featured researches published by Sigurd Lenzen.


Diabetes | 1997

Relation Between Antioxidant Enzyme Gene Expression and Antioxidative Defense Status of Insulin-Producing Cells

Markus Tiedge; Stephan Lortz; Jens Drinkgern; Sigurd Lenzen

Antioxidant enzyme expression was determined in rat pancreatic islets and RINm5F insulin-producing cells on the level of mRNA, protein, and enzyme activity in comparison with 11 other rat tissues. Although superoxide dismutase expression was in the range of 30% of the liver values, the expression of the hydrogen peroxide-inactivating enzymes catalase and glutathione per-oxidase was extremely low, in the range of 5% of the liver. Pancreatic islets but not RINm5F cells expressed an additional phospholipid hydroperoxide glutathione peroxidase that exerted protective effects against lipid peroxidation of the plasma membrane. Regression analysis for mRNA and protein expression and enzyme activities from 12 rat tissues revealed that the mRNA levels determine the enzyme activities of the tissues. The induction of cellular stress by high glucose, high oxygen, and heat shock treatment did not affect antioxidant enzyme expression in rat pancreatic islets or in RINm5F cells. Thus insulin-producing cells cannot adapt the low antioxidant enzyme activity levels to typical situations of cellular stress by an upregulation of gene expression. Through stable transfection, however, we were able to increase catalase and glutathione peroxidase gene expression in RINm5F cells, resulting in enzyme activities more than 100-fold higher than in nontransfected controls. Catalase-transfected RINm5F cells showed a 10-fold greater resistance toward hydrogen peroxide toxicity, whereas glutathione peroxidase overexpression was much less effective. Thus inactiva-tion of hydrogen peroxide through catalase seems to be a step of critical importance for the removal of reactive oxygen species in insulin-producing cells. Overexpression of catalase may therefore be an effective means of preventing the toxic action of reactive oxygen species.


Biochemical Society Transactions | 2008

Oxidative stress: the vulnerable β-cell

Sigurd Lenzen

Antioxidative defence mechanisms of pancreatic beta-cells are particularly weak and can be overwhelmed by redox imbalance arising from overproduction of reactive oxygen and reactive nitrogen species. The consequences of this redox imbalance are lipid peroxidation, oxidation of proteins, DNA damage and interference of reactive species with signal transduction pathways, which contribute significantly to beta-cell dysfunction and death in Type 1 and Type 2 diabetes mellitus. Reactive oxygen species, superoxide radicals (O(2)(*-)), hydrogen peroxide (H(2)O(2)) and, in a final iron-catalysed reaction step, the most reactive and toxic hydroxyl radicals (OH(*)) are produced during both pro-inflammatory cytokine-mediated beta-cell attack in Type 1 diabetes and glucolipotoxicity-mediated beta-cell dysfunction in Type 2 diabetes. In combination with NO(*), which is toxic in itself, as well as through its reaction with the O(2)(*-) and subsequent formation of peroxynitrite, reactive species play a central role in beta-cell death during the deterioration of glucose tolerance in the development of diabetes.


Diabetologia | 2000

Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin

Matthias Elsner; B. Guldbakke; Markus Tiedge; Rex Munday; Sigurd Lenzen

Aims/hypothesis. The role of selective uptake and alkylation in the diabetogenic action of streptozotocin was investigated in bioengineered RINm5F insulin-producing cells, with different expression levels of the glucose transporter GLUT2, by comparing the toxicity of streptozotocin with that of four chemically related alkylating compounds, N-methyl-N-nitrosourea (MNU), N-ethyl-N nitrosourea (ENU), methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS). Methods. GLUT2 expressing RINm5F cells were generated through stable transfection of the rat glucose transporter GLUT2 cDNA under the control of the cytomegalovirus promoter in the pcDNA3 vector. Viability of the cells was determined using a microtitre plate-based 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Results. Cells expressing the glucose transporter GLUT2 were much more susceptible to streptozotocin toxicity than control cells due to the uptake of streptozotocin by this specific glucose transporter. In contrast, the GLUT2 expression had no effect upon the toxicity of MNU, ENU, MMS or EMS. Although the latter substances are, like streptozotocin, cytotoxic through their ability to cause DNA alkylation, they are not diabetogenic because they are not taken up through the glucose transporter GLUT2. Conclusion/interpretation. Our results are consistent with the central importance of selective uptake and alkylating activity in the mechanism of streptozotocin diabetogenicity. Alkylation of DNA leads to necrosis of pancreatic beta cells and thus to a state of insulin-dependent diabetes mellitus, well-known as streptozotocin diabetes in experimental diabetes research. [Diabetologia (2000) 43: 1528–1533]


Naunyn-schmiedebergs Archives of Pharmacology | 1988

Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells

B. J. Zünkler; Sigurd Lenzen; Männer K; U. Panten; G. Trube

SummaryThe influence of the hypoglycemic drugs tolbutamide, meglitinide, glipizide and glibenclamide on ATP-dependent K+ currents of mouse pancreatic B-cells was studied using the whole-cell configuration of the patch-clamp technique. In the absence of albumin, tolbutamide blocked the currents half maximally at 4.1 μmol/l. In the presence of 2 mg/ml albumin half maximal inhibition of the currents was observed at 2.1 μmol/l meglitinide, 6.4 nmol/l glipizide and 4.0 nmol/1 glibenclamide. The hyperglycemic sulfonamide diazoxide opened ATP-dependent K+channels. Half maximally effective concentrations of diazoxide were 20 μmol/l with 0.3 mmol/1 ATPand102 μmol/l with 1 mmol/1 ATP in the recording pipette. Thus, the action of diazoxide was dependent on the presence of ATP in the recording pipette. The free concentrations of the drugs which influenced ATP-dependent K+ currents were comparable with the free plasma concentrations in humans and the free concentrations which affected insulin secretion in vitro. The results support the view that the target for the actions of sulfonylureas and of diazoxide is the ATP-dependent K+ channel of the pancreatic B-cell or a structure closely related to this channel.


Biochemical Pharmacology | 1989

Control of insulin secretion by sulfonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets

Uwe Panten; Johanna Burgfeld; Frank Goerke; Michael Rennicke; Mathias Schwanstecher; Andreas Wallasch; Bernd J. Zünkler; Sigurd Lenzen

Sulfonylureas inhibit an ATP-dependent K+ channel in the B-cell plasma membrane and thereby initiate insulin release. Diazoxide opens this channel and inhibits insulin release. In mouse pancreatic islets, we have explored whether other targets for these drugs must be postulated to explain their hypo- or hyperglycaemic properties. At non-saturating drug concentrations the rates of increase in insulin secretion declined in the order tolbutamide = meglitinide greater than glipizide greater than glibenclamide. The same rank order was observed when comparing the rates of disappearance of insulin-releasing and K+ channel-blocking effects. The different kinetics of response depend on the lipid solubility of the drugs, which controls their penetration into the intracellular space. Allowing for the different kinetics, the same maximum secretory rates were caused by saturating concentrations of tolbutamide, meglitinide, glipizide and glibenclamide. A close correlation between insulin-releasing and K+ channel-blocking potencies of these drugs was observed. The relative potencies of tolbutamide, meglitinide, glipizide and glibenclamide corresponded well to their relative affinities for binding to islet-cell membranes, suggesting that the binding site represents the sulfonylurea receptor. The biphasic time-course of dissociation of glibenclamide binding indicates a complex receptor-drug interaction. For diazoxide there was no correlation between affinity of binding to the sulfonylurea receptor and potency of inhibition of insulin secretion. Thus, opening or closing of the ATP-dependent K+ channel by diazoxide or sulfonylureas, respectively, appears to be due to interaction with different binding sites in the B-cell plasma membrane. The free concentrations of tolbutamide, glipizide, glibenclamide and diazoxide which are effective on B-cells are in the range of therapeutic plasma concentrations of the free drugs. It is concluded that the hypo- and hyperglycaemic effects of these drugs result from changing the permeability of the ATP-dependent K+ channel in the B-cell plasma membrane.


Diabetes | 2011

Peroxisome generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells

Matthias Elsner; Wiebke Gehrmann; Sigurd Lenzen

OBJECTIVE Type 2 diabetes is a complex disease that is accompanied by elevated levels of nonesterified fatty acids (NEFAs), which contribute to β-cell dysfunction and β-cell loss, referred to as lipotoxicity. Experimental evidence suggests that oxidative stress is involved in lipotoxicity. In this study, we analyzed the molecular mechanisms of reactive oxygen species-mediated lipotoxicity in insulin-producing RINm5F cells and INS-1E cells as well as in primary rat islet cells. RESEARCH DESIGN AND METHODS The toxicity of saturated NEFAs with different chain lengths upon insulin-producing cells was determined by MTT and propidium iodide (PI) viability assays. Catalase or superoxide dismutase overexpressing cells were used to analyze the nature and the cellular compartment of reactive oxygen species formation. With the new H2O2-sensitive fluorescent protein HyPer H2O2 formation induced by exposure to palmitic acid was determined. RESULTS Only long-chain (>C14) saturated NEFAs were toxic to insulin-producing cells. Overexpression of catalase in the peroxisomes and in the cytosol, but not in the mitochondria, significantly reduced H2O2 formation and protected the cells against palmitic acid-induced toxicity. With the HyPer protein, H2O2 generation was directly detectable in the peroxisomes of RINm5F and INS-1E insulin-producing cells as well as in primary rat islet cells. CONCLUSIONS The results demonstrate that H2O2 formation in the peroxisomes rather than in the mitochondria are responsible for NEFA-induced toxicity. Therefore, we propose a new concept of fatty acid-induced β-cell lipotoxicity mediated via reactive oxygen species formation through peroxisomal β- oxidation.


Diabetes, Obesity and Metabolism | 2010

Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells

Wiebke Gehrmann; Matthias Elsner; Sigurd Lenzen

Chronically elevated concentrations of non‐esterified fatty acids (NEFAs) in type 2 diabetes may be involved in β‐cell dysfunction and apoptosis. It has been shown that long‐chain saturated NEFAs exhibit a strong cytotoxic effect upon insulin‐producing cells, while short‐chain as well as unsaturated NEFAs are well tolerated. Moreover, long‐chain unsaturated NEFAs counteract the toxicity of palmitic acid. Reactive oxygen species (ROS) formation and gene expression analyses together with viability assays in different β‐cell lines showed that the G‐protein‐coupled receptors 40 and 120 do not mediate lipotoxicity. This is independent from the role, which these receptors, specifically GPR40, play in the potentiation of glucose‐induced insulin secretion by saturated and unsaturated long‐chain NEFAs. Long‐chain NEFAs are not only metabolized in the mitochondria but also in peroxisomes. In contrast to mitochondrial β‐oxidation, the acyl‐coenzyme A (CoA) oxidases in the peroxisomes form hydrogen peroxide and not reducing equivalents. As β‐cells almost completely lack catalase, they are exceptionally vulnerable to hydrogen peroxide generated in peroxisomes. ROS generation in the respiratory chain is less important because overexpression of catalase and superoxide dismutase in the mitochondria do not provide protection. Thus, peroxisomally generated hydrogen peroxide is the likely ROS that causes pancreatic β‐cell dysfunction and ultimately β‐cell death.


Diabetologia | 1999

Protection against the co-operative toxicity of nitric oxide and oxygen free radicals by overexpression of antioxidant enzymes in bioengineered insulin-producing RINm5F cells

Markus Tiedge; Stephan Lortz; Rex Munday; Sigurd Lenzen

Aims/hypothesis. The importance of different antioxidative enzymes for the defence of insulin-producing cells against the toxicity of nitric oxide (NO) was characterised in bioengineered RINm5F cells. Methods. RINm5F insulin-producing cells stably overexpressing glutathione peroxidase (GPX), catalase (CAT) or Cu/Zn superoxide dismutase (SOD) were exposed to S-nitroso-N-acetyl-d,l-penicillamine (SNAP), sodium nitroprusside (SNP) and 3 morpholinosydnonimine (SIN-1), which generate both NO and reactive oxygen species, and to the polyamine/NO, complex DETA/NO which generates NO alone. The viability of the cells was tested by the MTT assay. Results. Overexpression of antioxidant enzymes provided significant protection against the toxicity of SNAP, SNP and SIN-1, with an individual specificity related to their chemical characteristics, but was without effect upon the toxicity of DETA/NO. Cells overexpressing GPX were well protected against SNP and SNAP, while CAT was most effective against SIN-1. SOD overexpression provided less protection against the toxicity of SNAP and SNP than overexpression of GPX but was more effective in protecting against SIN-1. Co-incubation of cells with NO donors and hydrogen peroxide or hypoxanthine and xanthine oxidase showed an overadditive synergism of toxicity. Conclusion/interpretation. The results emphasise the importance of a synergism between NO and reactive oxygen species for pancreatic beta-cell death. Such a synergism has also been observed after exposure of beta cells to cytokines. The component of the toxicity that is mediated by oxygen radicals can be suppressed effectively through overexpression of CAT, GPX or SOD or both. [Diabetologia (1999) 42: 849–855]


Diabetologia | 2001

The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus.

Sigurd Lenzen; Markus Tiedge; Matthias Elsner; Stephan Lortz; Heike Weiss; Anne Jörns; Günter Klöppel; Dirk Wedekind; C. M. Prokop; Hans-Jürgen Hedrich

Abstract.Aims/hypothesis: We describe a new Type I (insulin-dependent) diabetes mellitus rat model (LEW.1AR1/Ztm-iddm) which arose through a spontaneous mutation in a congenic Lewis rat strain with a defined MHC haplotype (RT1.Aa B/Du Cu).Methods: The development of diabetes was characterised using biochemical, immunological and morphological methods. Results: Diabetes appeared in the rats with an incidence of 20 % without major sex preference at 58 ± 2 days. The disease was characterised by hyperglycaemia, glycosuria, ketonuria and polyuria. In peripheral blood, the proportion of T lymphocytes was in the normal range expressing the RT6.1 differentiation antigen. Islets were heavily infiltrated with B and T lymphocytes, macrophages and NK cells with beta cells rapidly destroyed through apoptosis in areas of insulitis. Conclusion/interpretation: This Type I diabetic rat develops a spontaneous insulin-dependent autoimmune diabetes through beta cell apoptosis. It could prove to be a valuable new animal model for clarifying the mechanisms involved in the development of autoimmune diabetes. [Diabetologia (2001) 44: 1189–1196]


Diabetologia | 2010

Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis

Florent Allagnat; Foteini Christulia; Fernanda Ortis; Pierre Pirot; Stephan Lortz; Sigurd Lenzen; Decio L. Eizirik; Alessandra K Cardozo

Aims/hypothesisPro-inflammatory cytokines involved in the pathogenesis of type 1 diabetes deplete endoplasmic reticulum (ER) Ca2+ stores, leading to ER-stress and beta cell apoptosis. However, the cytokine-induced ER-stress response in beta cells is atypical and characterised by induction of the pro-apoptotic PKR-like ER kinase (PERK)–C/EBP homologous protein (CHOP) branch of the unfolded protein response, but defective X-box binding protein 1 (XBP1) splicing and activating transcription factor 6 activation. The purpose of this study was to overexpress spliced/active Xbp1 (XBP1s) to increase beta cell resistance to cytokine-induced ER-stress and apoptosis.MethodsXbp1s was overexpressed using adenoviruses and knocked down using small interference RNA in rat islet cells. In selected experiments, Xbp1 was also knocked down in FACS-purified rat beta cells and rat fibroblasts. Expression and production of XBP1s and key downstream genes and proteins was measured and beta cell function and viability were evaluated.ResultsAdenoviral-mediated overproduction of Xbp1s resulted in increased XBP1 activity and induction of several XBP1s target genes. Surprisingly, XBP1s overexpression impaired glucose-stimulated insulin secretion and increased beta cell apoptosis, whereas it protected fibroblasts against cell death induced by ER-stress. mRNA expression of Pdx1 and Mafa was inhibited in cells overproducing XBP1s, leading to decreased insulin expression. XBP1s knockdown partially restored cytokine/ER-stress-driven insulin and Pdx1 inhibition but had no effect on cytokine-induced ER-stress and apoptosis.Conclusions/interpretationXBP1 has a distinct inhibitory role in beta cell as compared with other cell types. Prolonged XBP1s production hampers beta cell function via inhibition of insulin, Pdx1 and Mafa expression, eventually leading to beta cell apoptosis.

Collaboration


Dive into the Sigurd Lenzen's collaboration.

Top Co-Authors

Avatar

Anne Jörns

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Panten

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilir Mehmeti

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge