Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sihe Zhang is active.

Publication


Featured researches published by Sihe Zhang.


Hepatology | 2007

A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation.

Jing Xu; Zhong‐Yang Shen; Xinguo Chen; Qing Zhang; Huijie Bian; Ping Zhu; Huiyun Xu; Fei Song; Xiang-Min Yang; Li Mi; Qing‐Chuan Zhao; Rong Tian; Qiang Feng; Sihe Zhang; Yu Li; Jian-Li Jiang; Ling Li; Xiaoling Yu; Zheng Zhang; Zhi-Nan Chen

Orthotopic liver transplantation (OLT) is the only curative therapy of HCC with underlying cirrhosis, but due to HCC metastasis and recurrence, its benefit is limited to a small population who meet the strict selection criteria. We previously reported that Licartin ([131I]mAb HAb18G/CD147) was safe and effective in treating HCC patients, and its antigen, HAb18G/CD147, was closely related to HCC invasion and metastasis. Here, we reported a randomized controlled trial to assess the post‐OLT antirecurrence efficacy of Licartin in advanced HCC patients. We randomized 60 post‐OLT patients with HCC, who were at tumor stage 3/4 and outside the Milan criteria before OLT, into 2 groups. Three weeks after OLT, the treatment group received 15.4 MBq/kg of Licartin, while the control group received placebo intravenously for 3 times with an interval of 28 days. At 1‐year follow‐up, the recurrence rate significantly decreased by 30.4% (P = 0.0174) and the survival rate increased by 20.6% (P = 0.0289) in the treatment group, compared with those in the control group. For the control group versus the treatment group, the hazard ratio for recurrence was 3.60 (95% confidence interval [CI], 1.50‐8.60) and that for death was 3.87 (95% CI, 1.23–12.21). Licartin treatment also resulted in an earlier decreased AFP level and a longer time of normal AFP level than placebo (P = 0.0016). No Licartin‐related toxic effects were observed. Conclusion: Licartin is a promising drug for preventing post‐OLT tumor recurrence in advanced HCC patients excluded by the currently strict criteria for OLT. HAb18G/CD147 can be a good drug target. (HEPATOLOGY 2007;45:269–276.)


Hepatology | 2011

HAb18G/CD147 promotes cell motility by regulating annexin II‐activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells

Pu Zhao; Wei Zhang; Shi-Jie Wang; Xiaoling Yu; Juan Tang; Wan Huang; Yong Li; Hong-Yong Cui; Yun-Shan Guo; Jan Tavernier; Sihe Zhang; Jian-Li Jiang; Zhi-Nan Chen

Tumor cells can move as individual cells in two interconvertible modes: mesenchymal mode and amoeboid mode. Cytoskeleton rearrangement plays an important role in the interconversion. Previously, we reported that HAb18G/CD147 and annexin II are interacting proteins involved in cytoskeleton rearrangement, yet the role of their interaction is unclear. In this study we found that the depletion of HAb18G/CD147 produced a rounded morphology, which is associated with amoeboid movement, whereas the depletion of annexin II resulted in an elongated morphology, which is associated with mesenchymal movement. The extracellular portion of HAb18G/CD147 can interact with a phosphorylation‐inactive mutant of annexin II and inhibit its phosphorylation. HAb18G/CD147 inhibits Rho signaling pathways and amoeboid movement by inhibiting annexin II phosphorylation, promotes membrane localization of WAVE2 and Rac1 activation by way of the integrin‐FAK‐PI3K/PIP3 signaling pathway, and promotes the formation of lamellipodia and mesenchymal movement. Conclusion: These results suggest that the interaction of HAb18G/CD147 with annexin II is involved in the interconversion between mesenchymal and amoeboid movement of hepatocellular carcinoma cells. (HEPATOLOGY 2011)


Cancer Science | 2010

Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147

Pu Zhao; Wei Zhang; Juan Tang; Xiao-Kui Ma; Jing-Yao Dai; Yong Li; Jian-Li Jiang; Sihe Zhang; Zhi-Nan Chen

HAb18G/CD147, a member of the immunoglobulin family enriched on the surface of tumor cells, is reported to be correlated with invasion, metastasis, growth, and survival of malignant cells. Here, we found that annexin II, a 36‐kDa Ca2+‐ and phospholipid‐binding protein and in vivo substrate for tyrosine kinase and PKC, is a new interaction protein of HAb18G/CD147 in human hepatocellular carcinoma (HCC) cells. In the present study, we explored the unclear role of annxin II in HCC invasion and migration and the interaction effects between HAb18G/CD147 and annexin II. Our data show that downregulation of annexin II in HCC cells significantly decreased the secretion of MMP, migration ability, and invasive potential, and affected the cytoskeleton rearrangement of tumor cells. The MMP‐2 level and invasive potential of HCC cells were regulated by both annexin II and HAb18G/CD147. Also, interaction effects exist between the two molecules in tumor progression, including MMP‐2 production, migration, and invasion. These results suggest that annexin II promotes the invasion and migration of HCC cells in vitro, and annexin II and HAb18G/CD147 interact with each other in the same signal transduction pathway working as a functional complex in tumor progression. (Cancer Sci 2009)


Proceedings of the National Academy of Sciences of the United States of America | 2010

Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery.

Anders Wittrup; Sihe Zhang; Katrin J. Svensson; Paulina Kucharzewska; Maria Johansson; Matthias Mörgelin; Mattias Belting

An increased understanding of cellular uptake mechanisms of macromolecules remains an important challenge in cell biology with implications for viral infection and macromolecular drug delivery. Here, we report a strategy based on antibody-conjugated magnetic nanoparticles for the isolation of endocytic vesicles induced by heparan sulfate proteoglycans (HSPGs), key cell-surface receptors of macromolecular delivery. We provide evidence for a role of the glucose-regulated protein (GRP)75/PBP74/mtHSP70/mortalin (hereafter termed “GRP75”) in HSPG-mediated endocytosis of macromolecules. GRP75 was found to be a functional constituent of intracellular vesicles of a nonclathrin-, noncaveolin- dependent pathway that was sensitive to membrane cholesterol depletion and that showed colocalization with the membrane raft marker cholera toxin subunit B. We further demonstrate a functional role of the RhoA GTPase family member CDC42 in this transport pathway; however, the small GTPase dynamin appeared not to be involved. Interestingly, we provide evidence of a functional role of GRP75 using RNAi-mediated down-regulation of GRP75 and GRP75-blocking antibodies, both of which inhibited macromolecular endocytosis. We conclude that GRP75, a chaperone protein classically found in the endoplasmic reticulum and mitochondria, is a functional constituent of noncaveolar, membrane raft-associated endocytic vesicles. Our data provide proof of principle of a strategy that should be generally applicable in the molecular characterization of selected endocytic pathways involved in macromolecular uptake by mammalian cells.


Journal of Biological Chemistry | 2009

ScFv antibody-induced translocation of cell-surface heparan sulfate proteoglycan to endocytic vesicles: evidence for heparan sulfate epitope specificity and role of both syndecan and glypican.

Anders Wittrup; Sihe Zhang; Gerdy B. ten Dam; Toin H. van Kuppevelt; Per Bengtson; Maria Johansson; Johanna E. Welch; Matthias Mörgelin; Mattias Belting

Cellular uptake of several viruses and polybasic macromolecules requires the expression of cell-surface heparan sulfate proteoglycan (HSPG) through as yet ill defined mechanisms. We unexpectedly found that among several cell-surface-binding single chain variable fragment (scFv) anti-HS antibody (αHS) clones, only one, AO4B08, efficiently translocated macromolecular cargo to intracellular vesicles through induction of HSPG endocytosis. Interestingly, AO4B08-induced PG internalization was strictly dependent on HS 2-O-sulfation and appeared independent of intact N-sulfation. AO4B08 and human immunodeficiency virus (HIV)-Tat, i.e. a well known cell-penetrating peptide, were shown to compete for the internalizing PG population. To obtain a more detailed characterization of this pathway, we have developed a procedure for the isolation of endocytic vesicles by conjugating AO4B08 with superparamagnetic nanoparticles. [35S]sulfate-labeled HSPG was found to accumulate in isolated, AO4B08-containing vesicles, providing the first biochemical evidence for intact HSPG co-internalization with its ligand. Further analysis revealed the existence of both syndecan, i.e. a transmembrane HSPG, and glycosyl-phosphatidyl-inositol-anchored glypican in purified vesicles. Importantly, internalized syndecan and glypican were found to co-localize in AO4B08-containing vesicles. Our data establish HSPGs as true internalizing receptors of macromolecular cargo and indicate that the sorting of cell-surface HSPG to endocytic vesicles is determined by a specific HS epitope that can be carried by both syndecan and glypican core protein.


Journal of Cellular and Molecular Medicine | 2011

Promoter hypomethylation up‐regulates CD147 expression through increasing Sp1 binding and associates with poor prognosis in human hepatocellular carcinoma

Ling-Min Kong; Cheng-Gong Liao; Liang Chen; Hushan Yang; Sihe Zhang; Zheng Zhang; Huijie Bian; Jinliang Xing; Zhi-Nan Chen

CD147 is a transmembrane glycoprotein overexpressed in human hepatocellular carcinoma (HCC) which could promote HCC progression and metastasis. Promoter methylation is one of the most important processes in gene regulation. In this study, we aim to investigate CD147 promoter methylation status and the correlation with clinicopathological features and prognosis in HCC. CD147 promoter methylation statuses and expression levels in normal and HCC cell lines and 54 paired HCC and adjacent non‐tumour (ANT) tissues were, respectively, examined by bisulphite genomic sequencing, methylation‐specific PCR, real‐time RT‐PCR, Western blot and immunohistochemistry. The correlations of promoter methylation statuses with CD147 expression level and the clinicopathological features were statistically analysed in HCC patients. Significantly higher expression of CD147 and significantly lower promoter methylation level were observed in HCC cell lines compared to normal cell lines and tissues control. In vivo and in vitro analysis indicated that demethylation with 5‐Aza‐2′‐deoxycytidine led to increased CD147 expression through enhancing Sp1 binding affinity, and methylation with methyltransferase reduced CD147 transcriptional activity through interfering Sp1 binding. CD147 promoter methylation level in HCC tissues (22.22%) was lower than that in ANT tissues (46.30%; P < 0.05). Within HCC tissues, a significant inverse correlation was observed between CD147 expression and methylation level (r=−0.615). Moreover, HCC patients with unmethylated CD147 promoter had a significantly higher recurrence rate (88.1%versus 58.3%; P < 0.05) and death rate (83.3%versus 50.0%; P < 0.05) than patients with methylated CD147 promoter. In conclusions, promoter hypomethylation up‐regulates CD147 expression primarily through increasing Sp1 binding and associates with poor prognosis in HCC patients.


Cancer Immunology, Immunotherapy | 2007

Guided selection of an anti-gamma-seminoprotein human Fab for antibody directed enzyme prodrug therapy of prostate cancer

Qing Zhang; Sihe Zhang; Mingquan Su; Guo-Qiang Bao; Jiayun Liu; Jing Yi; Shen Jj; Xiaoke Hao

BackgroundThe HAMA response is a major challenge when murine antibodies are repeatedly administered for antibody directed enzyme prodrug therapy in vivo. In this study we have achieved humanization of the anti-γ-seminoprotein E4B7 murine mAb by guided selection.MethodsUsing optimal Ig Fab primers, human Fd and CL gene repertoires were amplified by RT-PCR from PBMCs of prostate cancer patients. The human Lc gene repertoire was first paired with the murine Fd gene of E4B7 mAb to construct a pComb3X hybrid Fab display library. This hybrid library was screened with purified γ-seminoprotein antigen. The human Fd gene repertoire was then paired with the selected human Lc to construct a fully human Fab library. After four more rounds of panning, completely human Fab antibodies specific for γ-seminoprotein were selected and further identified.ResultsFirst, using the E4B7 Fd gene as a template, light chain shuffling was achieved by panning the hybrid library. Then, using the selected Lc as a template, a human Fab antibody against γ-seminoprotein was produced through heavy chain Fd shuffling. Western blotting, ELISA, and flow cytometry results demonstrated that the resulting human Fab antibody resembled the parental E4B7 mAb in that they both recognized the same epitope with similar affinities. Fluorescent cell staining and immunohistochemistry analysis further confirmed that this newly constructed human anti-γ-seminoprotein Fab antibody indeed specifically bound prostate cancer cells and tissue.ConclusionsThrough guided-selection, we successfully produced a human anti-γ-seminoprotein Fab antibody. This work lays the foundation for optimal antibody-directed enzyme prodrug therapy of prostate cancer using a fully human Fab antibody.


Experimental Cell Research | 2016

GRP75 upregulates clathrin-independent endocytosis through actin cytoskeleton reorganization mediated by the concurrent activation of Cdc42 and RhoA

Hang Chen; Zhihui Gao; Changzheng He; Rong Xiang; Toin H. van Kuppevelt; Mattias Belting; Sihe Zhang

Therapeutic macromolecules are internalized into the cell by either clathrin-mediated endocytosis (CME) or clathrin-independent endocytosis (CIE). Although some chaperone proteins play an essential role in CME (e.g. Hsc70 in clathrin uncoating), relatively few of these proteins are functionally involved in CIE. We previously revealed a role for the mitochondrial chaperone protein GRP75 in heparan sulfate proteoglycan (HSPG)-mediated, membrane raft-associated macromolecule endocytosis. However, the mechanism underlying this process remains unclear. In this study, using a mitochondrial signal peptide-directed protein trafficking expression strategy, we demonstrate that wild-type GRP75 expression enhanced the uptakes of HSPG and CIE marker cholera toxin B subunit but impaired the uptake of CME marker transferrin. The endocytosis regulation function of GRP75 is largely mediated by its subcellular location in mitochondria and is essentially determined by its ATPase domain. Interestingly, the mitochondrial expression of GRP75 or its ATPase domain significantly stimulates increases in both RhoA and Cdc42 activation, remarkably induces stress fibers and enhances filopodia formation, which collectively results in the promotion of CIE, but the inhibition of CME. Furthermore, silencing of Cdc42 or RhoA impaired the ability of GRP75 overexpression to increase CIE. Therefore, these results suggest that endocytosis vesicle enrichment of GRP75 by mitochondria trafficking upregulates CIE through an actin cytoskeleton reorganization mechanism mediated by the concurrent activation of Cdc42 and RhoA. This finding provides novel insight into organelle-derived chaperone signaling and the regulation of different endocytosis pathways in cells.


Methods of Molecular Biology | 2011

Studies of Proteoglycan Involvement in CPP-Mediated Delivery

Anders Wittrup; Sihe Zhang; Mattias Belting

Cell-penetrating peptides (CPPs) are widely used to deliver macromolecular cargoes to intracellular sites of action. Many CPPs have been demonstrated to rely on cell surface heparan sulfate proteoglycans (HSPGs) for efficient cellular entry and delivery. In this chapter, we describe methods for the study of PG involvement in CPP uptake. We provide descriptions of how to determine whether uptake of a CPP of interest is dependent on PGs. We also provide detailed protocols for the purification of PGs by anion-exchange chromatography as well as the characterization of the HSPG core protein composition of a cell line of interest. Finally, we present methods for modulating the expression level of specific HSPG core proteins as a means to determine the core protein specificity in the uptake of a particular CPP.


Oncotarget | 2017

Mitochondria chaperone GRP75 moonlighting as a cell cycle controller to derail endocytosis provides an opportunity for nanomicrosphere intracellular delivery

Zhihui Gao; Xiuran Niu; Qing Zhang; Hang Chen; Aiai Gao; Shanshan Qi; Rong Xiang; Mattias Belting; Sihe Zhang

Understanding how cancer cells regulate endocytosis during the cell cycle could lead us to capitalize this event pharmacologically. Although certain endocytosis pathways are attenuated during mitosis, the endocytosis shift and regulation during the cell cycle have not been well clarified. The conventional concept of glucose-regulated proteins (GRPs) as protein folding chaperones was updated by discoveries that translocated GRPs assume moonlighting functions that modify the immune response, regulate viral release, and control intracellular trafficking. In this study, GRP75, a mitochondria matrix chaperone, was discovered to be highly expressed in mitotic cancer cells. Using synchronized cell models and the GRP75 gene knockdown and ectopic overexpression strategy, we showed that: (1) clathrin-mediated endocytosis (CME) was inhibited whereas clathrin-independent endocytosis (CIE) was unchanged or even up-regulated in the cell cycle M-phase; (2) GRP75 inhibited CME but promoted CIE in the M-phase, which is largely due to its high expression in cancer cell mitochondria; (3) GRP75 targeting by its small molecular inhibitor MKT-077 enhanced cell cycle G1 phase-privileged CME, which provides an opportunity for intracellular delivery of nanomicrospheres sized from 40 nm to 100 nm. Together, our results revealed that GRP75 moonlights as a cell cycle controller and endocytosis regulator in cancer cells, and thus has potential as a novel interference target for nanoparticle drugs delivery into dormant cancer cells.Understanding how cancer cells regulate endocytosis during the cell cycle could lead us to capitalize this event pharmacologically. Although certain endocytosis pathways are attenuated during mitosis, the endocytosis shift and regulation during the cell cycle have not been well clarified. The conventional concept of glucose-regulated proteins (GRPs) as protein folding chaperones was updated by discoveries that translocated GRPs assume moonlighting functions that modify the immune response, regulate viral release, and control intracellular trafficking. In this study, GRP75, a mitochondria matrix chaperone, was discovered to be highly expressed in mitotic cancer cells. Using synchronized cell models and the GRP75 gene knockdown and ectopic overexpression strategy, we showed that: (1) clathrin-mediated endocytosis (CME) was inhibited whereas clathrin-independent endocytosis (CIE) was unchanged or even up-regulated in the cell cycle M-phase; (2) GRP75 inhibited CME but promoted CIE in the M-phase, which is largely due to its high expression in cancer cell mitochondria; (3) GRP75 targeting by its small molecular inhibitor MKT-077 enhanced cell cycle G1 phase-privileged CME, which provides an opportunity for intracellular delivery of nanomicrospheres sized from 40 nm to 100 nm. Together, our results revealed that GRP75 moonlights as a cell cycle controller and endocytosis regulator in cancer cells, and thus has potential as a novel interference target for nanoparticle drugs delivery into dormant cancer cells.

Collaboration


Dive into the Sihe Zhang's collaboration.

Top Co-Authors

Avatar

Zhi-Nan Chen

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jinliang Xing

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qing Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiang-Min Yang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Song

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huijie Bian

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jian-Li Jiang

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge