Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siiri Rootsi is active.

Publication


Featured researches published by Siiri Rootsi.


American Journal of Human Genetics | 2000

Y-Chromosomal Diversity in Europe Is Clinal and Influenced Primarily by Geography, Rather than by Language

Zoë H. Rosser; Tatiana Zerjal; Matthew E. Hurles; Maarja Adojaan; Dragan Alavantic; António Amorim; William Amos; Manuel Armenteros; Eduardo Arroyo; Guido Barbujani; G. Beckman; L. Beckman; Jaume Bertranpetit; Elena Bosch; Daniel G. Bradley; Gaute Brede; Gillian Cooper; Helena B.S.M. Côrte-Real; Peter de Knijff; Ronny Decorte; Yuri E. Dubrova; Oleg V. Evgrafov; Anja Gilissen; Sanja Glisic; Mukaddes Gölge; Emmeline W. Hill; Anna Jeziorowska; Luba Kalaydjieva; Manfred Kayser; Toomas Kivisild

Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift.


American Journal of Human Genetics | 2003

The Genetic Heritage of the Earliest Settlers Persists Both in Indian Tribal and Caste Populations

Toomas Kivisild; Siiri Rootsi; Mait Metspalu; Sarabjit S. Mastana; Katrin Kaldma; Jüri Parik; Ene Metspalu; M. Adojaan; Helle-Viivi Tolk; V. A. Stepanov; Mukaddes Gölge; E. Usanga; S.S. Papiha; Cengiz Cinnioglu; Roy King; L. L. Cavalli-Sforza; Peter A. Underhill; Richard Villems

Two tribal groups from southern India--the Chenchus and Koyas--were analyzed for variation in mitochondrial DNA (mtDNA), the Y chromosome, and one autosomal locus and were compared with six caste groups from different parts of India, as well as with western and central Asians. In mtDNA phylogenetic analyses, the Chenchus and Koyas coalesce at Indian-specific branches of haplogroups M and N that cover populations of different social rank from all over the subcontinent. Coalescence times suggest early late Pleistocene settlement of southern Asia and suggest that there has not been total replacement of these settlers by later migrations. H, L, and R2 are the major Indian Y-chromosomal haplogroups that occur both in castes and in tribal populations and are rarely found outside the subcontinent. Haplogroup R1a, previously associated with the putative Indo-Aryan invasion, was found at its highest frequency in Punjab but also at a relatively high frequency (26%) in the Chenchu tribe. This finding, together with the higher R1a-associated short tandem repeat diversity in India and Iran compared with Europe and central Asia, suggests that southern and western Asia might be the source of this haplogroup. Haplotype frequencies of the MX1 locus of chromosome 21 distinguish Koyas and Chenchus, along with Indian caste groups, from European and eastern Asian populations. Taken together, these results show that Indian tribal and caste populations derive largely from the same genetic heritage of Pleistocene southern and western Asians and have received limited gene flow from external regions since the Holocene. The phylogeography of the primal mtDNA and Y-chromosome founders suggests that these southern Asian Pleistocene coastal settlers from Africa would have provided the inocula for the subsequent differentiation of the distinctive eastern and western Eurasian gene pools.


Nature | 2014

Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

Maanasa Raghavan; Pontus Skoglund; Kelly E. Graf; Mait Metspalu; Anders Albrechtsen; Ida Moltke; Simon Rasmussen; Thomas W. Stafford; Ludovic Orlando; Ene Metspalu; Monika Karmin; Kristiina Tambets; Siiri Rootsi; Reedik Mägi; Paula F. Campos; Elena Balanovska; Oleg Balanovsky; Elza Khusnutdinova; Sergey Litvinov; Ludmila P. Osipova; Sardana A. Fedorova; M. I. Voevoda; Michael DeGiorgio; Thomas Sicheritz-Pontén; Søren Brunak; Svetlana Demeshchenko; Toomas Kivisild; Richard Villems; Rasmus Nielsen; Mattias Jakobsson

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal’ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


American Journal of Human Genetics | 2004

Phylogeography of Y-Chromosome Haplogroup I Reveals Distinct Domains of Prehistoric Gene Flow in Europe

Siiri Rootsi; Toomas Kivisild; Giorgia Benuzzi; Hela Help; Marina Bermisheva; Ildus Kutuev; Lovorka Barać; Marijana Peričić; Oleg Balanovsky; Andrey Pshenichnov; Daniel Dion; Monica Grobei; Vincenza Battaglia; Alessandro Achilli; Nadia Al-Zahery; Jüri Parik; Roy King; Cengiz Cinnioglu; E. K. Khusnutdinova; Pavao Rudan; Elena Balanovska; Wolfgang Scheffrahn; Maya Simonescu; António Brehm; Rita Gonçalves; Alexandra Rosa; Jean-Paul Moisan; Andre Chaventre; Vladimír Ferák; Sandor Füredi

To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals, or more recent events of gene flow, we have analyzed, in detail, haplogroup I (Hg I), the only major clade of the Y phylogeny that is widespread over Europe but virtually absent elsewhere. The analysis of 1,104 Hg I Y chromosomes, which were identified in the survey of 7,574 males from 60 population samples, revealed several subclades with distinct geographic distributions. Subclade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency toward both the East European Plain and the Atlantic fringe, but microsatellite diversity reveals that France could be the source region of the early spread of both I1a and the less common I1c. Also, I1b*, which extends from the eastern Adriatic to eastern Europe and declines noticeably toward the southern Balkans and abruptly toward the periphery of northern Italy, probably diffused after the Last Glacial Maximum from a homeland in eastern Europe or the Balkans. In contrast, I1b2 most likely arose in southern France/Iberia. Similarly to the other subclades, it underwent a postglacial expansion and marked the human colonization of Sardinia approximately 9,000 years ago.


Nature Communications | 2012

New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing

Andreas Keller; Angela Graefen; Markus Ball; Mark Matzas; Valesca Boisguerin; Frank Maixner; Petra Leidinger; Christina Backes; Rabab Khairat; Michael Forster; Björn Stade; Andre Franke; Jens Mayer; Jessica Spangler; Stephen F. McLaughlin; Minita Shah; Clarence Lee; Timothy T. Harkins; Alexander Sartori; Andres Moreno-Estrada; Brenna M. Henn; Martin Sikora; Ornella Semino; Jacques Chiaroni; Siiri Rootsi; Natalie M. Myres; Vicente M. Cabrera; Peter A. Underhill; Carlos Bustamante; Eduard Egarter Vigl

The Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Ötztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to ~60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis.


Nature | 2010

The genome-wide structure of the Jewish people

Doron M. Behar; Bayazit Yunusbayev; Mait Metspalu; Ene Metspalu; Saharon Rosset; Jüri Parik; Siiri Rootsi; Gyaneshwer Chaubey; Ildus Kutuev; Guennady Yudkovsky; Elza Khusnutdinova; Oleg Balanovsky; Ornella Semino; Luísa Pereira; David Comas; David Gurwitz; Batsheva Bonne-Tamir; Tudor Parfitt; Michael F. Hammer; Karl Skorecki; Richard Villems

Contemporary Jews comprise an aggregate of ethno-religious communities whose worldwide members identify with each other through various shared religious, historical and cultural traditions. Historical evidence suggests common origins in the Middle East, followed by migrations leading to the establishment of communities of Jews in Europe, Africa and Asia, in what is termed the Jewish Diaspora. This complex demographic history imposes special challenges in attempting to address the genetic structure of the Jewish people. Although many genetic studies have shed light on Jewish origins and on diseases prevalent among Jewish communities, including studies focusing on uniparentally and biparentally inherited markers, genome-wide patterns of variation across the vast geographic span of Jewish Diaspora communities and their respective neighbours have yet to be addressed. Here we use high-density bead arrays to genotype individuals from 14 Jewish Diaspora communities and compare these patterns of genome-wide diversity with those from 69 Old World non-Jewish populations, of which 25 have not previously been reported. These samples were carefully chosen to provide comprehensive comparisons between Jewish and non-Jewish populations in the Diaspora, as well as with non-Jewish populations from the Middle East and north Africa. Principal component and structure-like analyses identify previously unrecognized genetic substructure within the Middle East. Most Jewish samples form a remarkably tight subcluster that overlies Druze and Cypriot samples but not samples from other Levantine populations or paired Diaspora host populations. In contrast, Ethiopian Jews (Beta Israel) and Indian Jews (Bene Israel and Cochini) cluster with neighbouring autochthonous populations in Ethiopia and western India, respectively, despite a clear paternal link between the Bene Israel and the Levant. These results cast light on the variegated genetic architecture of the Middle East, and trace the origins of most Jewish Diaspora communities to the Levant.


European Journal of Human Genetics | 2011

A major Y-chromosome haplogroup R1b Holocene era founder effect in Central and Western Europe.

Natalie M. Myres; Siiri Rootsi; Alice A. Lin; Mari Järve; Roy King; Ildus Kutuev; Vicente M. Cabrera; Elza Khusnutdinova; Andrey Pshenichnov; Bayazit Yunusbayev; Oleg Balanovsky; Elena Balanovska; Pavao Rudan; Marian Baldovic; Rene J. Herrera; Jacques Chiaroni; Julie Di Cristofaro; Richard Villems; Toomas Kivisild; Peter A. Underhill

The phylogenetic relationships of numerous branches within the core Y-chromosome haplogroup R-M207 support a West Asian origin of haplogroup R1b, its initial differentiation there followed by a rapid spread of one of its sub-clades carrying the M269 mutation to Europe. Here, we present phylogeographically resolved data for 2043 M269-derived Y-chromosomes from 118 West Asian and European populations assessed for the M412 SNP that largely separates the majority of Central and West European R1b lineages from those observed in Eastern Europe, the Circum-Uralic region, the Near East, the Caucasus and Pakistan. Within the M412 dichotomy, the major S116 sub-clade shows a frequency peak in the upper Danube basin and Paris area with declining frequency toward Italy, Iberia, Southern France and British Isles. Although this frequency pattern closely approximates the spread of the Linearbandkeramik (LBK), Neolithic culture, an advent leading to a number of pre-historic cultural developments during the past ≤10 thousand years, more complex pre-Neolithic scenarios remain possible for the L23(xM412) components in Southeast Europe and elsewhere.


European Journal of Human Genetics | 2007

A counter-clockwise northern route of the Y-chromosome haplogroup N from Southeast Asia towards Europe

Siiri Rootsi; Marian Baldovic; Manfred Kayser; Ildus Kutuev; R. I. Khusainova; Marina Bermisheva; Marina Gubina; Sardana A. Fedorova; Anne-Mai Ilumäe; Elza Khusnutdinova; M. I. Voevoda; Ludmila P. Osipova; Mark Stoneking; Alice A. Lin; Vladimír Ferák; Jüri Parik; Toomas Kivisild; Peter A. Underhill; Richard Villems

A large part of Y chromosome lineages in East European and East Asian human populations belong to haplogroup (hg) NO, which is composed of two sister clades N-M231 and O-M175. The O-clade is relatively old (around 30 thousand years (ky)) and encompasses the vast majority of east and Southeast Asian male lineages, as well as significant proportion of those in Oceanian males. On the other hand, our detailed analysis of hg N suggests that its high frequency in east Europe is due to its more recent expansion westward on a counter-clock northern route from inner Asia/southern Siberia, approximately 12–14 ky ago. The widespread presence of hg N in Siberia, together with its absence in Native Americans, implies its spread happened after the founder event for the Americas. The most frequent subclade N3, arose probably in the region of present day China, and subsequently experienced serial bottlenecks in Siberia and secondary expansions in eastern Europe. Another branch, N2, forms two distinctive subclusters of STR haplotypes, Asian (N2-A) and European (N2-E), the latter now mostly distributed in Finno-Ugric and related populations. These phylogeographic patterns provide evidence consistent with male-mediated counter-clockwise late Pleistocene–Holocene migratory trajectories toward Northwestern Europe from an ancestral East Asian source of Paleolithic heritage.


European Journal of Human Genetics | 2010

Separating the post-Glacial coancestry of European and Asian Y chromosomes within haplogroup R1a

Peter A. Underhill; Natalie M. Myres; Siiri Rootsi; Mait Metspalu; Roy King; Alice A. Lin; Cheryl-Emiliane T Chow; Ornella Semino; Vincenza Battaglia; Ildus Kutuev; Mari Järve; Gyaneshwer Chaubey; Qasim Ayub; Aisha Mohyuddin; S. Qasim Mehdi; Sanghamitra Sengupta; Evgeny I. Rogaev; Elza Khusnutdinova; Andrey Pshenichnov; Oleg Balanovsky; Elena Balanovska; Nina Jeran; Dubravka Havaš Auguštin; Marian Baldovic; Rene J. Herrera; Kumarasamy Thangaraj; Vijay Kumar Singh; Lalji Singh; Partha P. Majumder; Pavao Rudan

Human Y-chromosome haplogroup structure is largely circumscribed by continental boundaries. One notable exception to this general pattern is the young haplogroup R1a that exhibits post-Glacial coalescent times and relates the paternal ancestry of more than 10% of men in a wide geographic area extending from South Asia to Central East Europe and South Siberia. Its origin and dispersal patterns are poorly understood as no marker has yet been described that would distinguish European R1a chromosomes from Asian. Here we present frequency and haplotype diversity estimates for more than 2000 R1a chromosomes assessed for several newly discovered SNP markers that introduce the onset of informative R1a subdivisions by geography. Marker M434 has a low frequency and a late origin in West Asia bearing witness to recent gene flow over the Arabian Sea. Conversely, marker M458 has a significant frequency in Europe, exceeding 30% in its core area in Eastern Europe and comprising up to 70% of all M17 chromosomes present there. The diversity and frequency profiles of M458 suggest its origin during the early Holocene and a subsequent expansion likely related to a number of prehistoric cultural developments in the region. Its primary frequency and diversity distribution correlates well with some of the major Central and East European river basins where settled farming was established before its spread further eastward. Importantly, the virtual absence of M458 chromosomes outside Europe speaks against substantial patrilineal gene flow from East Europe to Asia, including to India, at least since the mid-Holocene.


European Journal of Human Genetics | 2009

Y-chromosomal evidence of the cultural diffusion of agriculture in southeast Europe

Vincenza Battaglia; Simona Fornarino; Nadia Al-Zahery; Anna Olivieri; Maria Pala; Natalie M. Myres; Roy King; Siiri Rootsi; Damir Marjanović; Dragan Primorac; Rifat Hadziselimovic; Stojko Vidović; Katia Drobnic; Naser Durmishi; Antonio Torroni; A. Silvana Santachiara-Benerecetti; Peter A. Underhill; Ornella Semino

The debate concerning the mechanisms underlying the prehistoric spread of farming to Southeast Europe is framed around the opposing roles of population movement and cultural diffusion. To investigate the possible involvement of local people during the transition of agriculture in the Balkans, we analysed patterns of Y-chromosome diversity in 1206 subjects from 17 population samples, mainly from Southeast Europe. Evidence from three Y-chromosome lineages, I-M423, E-V13 and J-M241, make it possible to distinguish between Holocene Mesolithic forager and subsequent Neolithic range expansions from the eastern Sahara and the Near East, respectively. In particular, whereas the Balkan microsatellite variation associated to J-M241 correlates with the Neolithic period, those related to E-V13 and I-M423 Balkan Y chromosomes are consistent with a late Mesolithic time frame. In addition, the low frequency and variance associated to I-M423 and E-V13 in Anatolia and the Middle East, support an European Mesolithic origin of these two clades. Thus, these Balkan Mesolithic foragers with their own autochthonous genetic signatures, were destined to become the earliest to adopt farming, when it was subsequently introduced by a cadre of migrating farmers from the Near East. These initial local converted farmers became the principal agents spreading this economy using maritime leapfrog colonization strategies in the Adriatic and transmitting the Neolithic cultural package to other adjacent Mesolithic populations. The ensuing range expansions of E-V13 and I-M423 parallel in space and time the diffusion of Neolithic Impressed Ware, thereby supporting a case of cultural diffusion using genetic evidence.

Collaboration


Dive into the Siiri Rootsi's collaboration.

Top Co-Authors

Avatar

Richard Villems

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavao Rudan

Croatian Academy of Sciences and Arts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elza Khusnutdinova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge