Sijie Luo
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sijie Luo.
Journal of Chemical Theory and Computation | 2014
Patanachai Janthon; Sijie Luo; Sergey M. Kozlov; Francesc Viñes; Jumras Limtrakul; Donald G. Truhlar; Francesc Illas
Systematic evaluation of the accuracy of exchange-correlation functionals is essential to guide scientists in their choice of an optimal method for a given problem when using density functional theory. In this work, accuracy of one Generalized Gradient Approximation (GGA) functional, three meta-GGA functionals, one Nonseparable Gradient Approximation (NGA) functional, one meta-NGA, and three hybrid GGA functionals was evaluated for calculations of the closest interatomic distances, cohesive energies, and bulk moduli of all 3d, 4d, and 5d bulk transition metals that have face centered cubic (fcc), hexagonal closed packed (hcp), or body centered cubic (bcc) structures (a total of 27 cases). Our results show that including the extra elements of kinetic energy density and Hartree-Fock exchange energy density into gradient approximation density functionals does not usually improve them. Nevertheless, the accuracies of the Tao-Perdew-Staroverov-Scuseria (TPSS) and M06-L meta-GGAs and the MN12-L meta-NGA approach the accuracy of the Perdew-Burke-Ernzerhof (PBE) GGA, so usage of these functionals may be advisable for systems containing both solid-state transition metals and molecular species. The N12 NGA functional is also shown to be almost as accurate as PBE for bulk transition metals, and thus it could be a good choice for studies of catalysis given its proven good performance for molecular species.
Journal of Chemical Theory and Computation | 2014
Giovanni Li Manni; Rebecca K. Carlson; Sijie Luo; Dongxia Ma; Jeppe Olsen; Donald G. Truhlar; Laura Gagliardi
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Physical Chemistry Chemical Physics | 2011
Sijie Luo; Yan Zhao; Donald G. Truhlar
In this work the ISOL24 database of isomerization energies of large organic molecules presented by Huenerbein et al. [Phys. Chem. Chem. Phys., 2010, 12, 6940] is updated, resulting in the new benchmark database called ISOL24/11, and this database is used to test 50 electronic model chemistries. To accomplish the update, the very expensive and highly accurate CCSD(T)-F12a/aug-cc-pVDZ method is first exploited to investigate a six-reaction subset of the 24 reactions, and by comparison of various methods with the benchmark, MCQCISD-MPW is confirmed to be of high accuracy. The final ISOL24/11 database is composed of six reaction energies calculated by CCSD(T)-F12a/aug-cc-pVDZ and 18 calculated by MCQCISD-MPW. We then tested 40 single-component density functionals (both local and hybrid), eight doubly hybrid functionals, and two other methods against ISOL24/11. It is found that the SCS-MP3/CBS method, which is used as benchmark for the original ISOL24, has an MUE of 1.68 kcal mol(-1), which is close to or larger than some of the best tested DFT methods. Using the new benchmark, we find ωB97X-D and MC3MPWB to be the best single-component and doubly hybrid functionals respectively, with PBE0-D3 and MC3MPW performing almost as well. The best single-component density functionals without molecular mechanics dispersion-like terms are M08-SO, M08-HX, M05-2X, and M06-2X. The best single-component density functionals without Hartree-Fock exchange are M06-L-D3 when MM terms are included and M06-L when they are not.
Journal of Physical Chemistry Letters | 2012
Sijie Luo; Yan Zhao; Donald G. Truhlar
A notorious failing of approximate exchange-correlation functionals when applied to problems involving catalysis has been the inability of most local functionals to predict the correct adsorption site for CO on metal surfaces or to simultaneously predict accurate surface formation energies and adsorption energies for transition metals. By adding the kinetic energy density τ to the density functional, the revTPSS density functional was shown recently to achieve a balanced description of surface energies and adsorption energies. Here, we show that the older M06-L density functional, also containing τ, provides improved surface formation energies and CO adsorption energies over revTPSS for five transition metals and correctly predicted the on-top/hollow site adsorption preferences for four of the five metals, which was not achieved by most other local functionals. Because M06-L was entirely designed on the basis of atomic and molecular energies, its very good performance is a confirmation of the reasonableness of its functional form. Two GGA functionals with an expansion in the reduced gradient that is correct through second order, namely, SOGGA and SOGGA11, were also tested and found to produce the best surface formation energies of all tested GGA functionals, although they significantly overestimate the adsorption energies.
Inorganic Chemistry | 2013
Rémi Maurice; Pragya Verma; Joseph M. Zadrozny; Sijie Luo; Joshua Borycz; Jeffrey R. Long; Donald G. Truhlar; Laura Gagliardi
The metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate), often referred to as Fe-MOF-74, possesses many interesting properties such as a high selectivity in olefin/paraffin separations. This compound contains open-shell Fe(II) ions with open coordination sites which may have large single-ion magnetic anisotropies, as well as isotropic couplings between the nearest and next nearest neighbor magnetic sites. To complement a previous analysis of experimental data made by considering only isotropic couplings [Bloch et al. Science 2012, 335, 1606], the magnitude of the main magnetic interactions are here assessed with quantum chemical calculations performed on a finite size cluster. It is shown that the single-ion anisotropy is governed by same-spin spin-orbit interactions (i.e., weak crystal-field regime), and that this effect is not negligible compared to the nearest neighbor isotropic couplings. Additional magnetic data reveal a metamagnetic behavior at low temperature. This effect can be attributed to various microscopic interactions, and the most probable scenarios are discussed.
Journal of Chemical Theory and Computation | 2012
Sijie Luo; Donald G. Truhlar
The ability of density functional theory to predict the relative energies of different spin states, especially for systems containing transition metal atoms, is of great importance for many applications. Here, in order to sort out the key factors determining accuracy, we compare the predictions of 60 density functional approximations of 10 different types [local spin density approximation, generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, range-separated hybrid GGA, range-separated hybrid GGA plus molecular mechanics, meta-GGA, meta-NGA, global-hybrid meta-GGA, and range-separated hybrid meta-GGA] for their ability to represent the spin-flip transitions of all 4d transition metal atoms of groups 3-10 (Y through Pd) and their singly positive cations. We consider all 16 excitation energies connecting the ground states (of the neutral atoms and the cations) to their first excited states of different multiplicities, and we also consider all eight ionization potentials. We also test the Hartree-Fock method. All density functional and Hartree-Fock calculations are converged to a stable solution, in which the spatial symmetry is allowed to be completely broken to achieve the lowest possible energy solution. By analyzing the fractional subshell occupancies and spin contaminations, we are able to sort out the effects of s orbital vs d orbital bias and high-spin vs low-spin bias. A reliable functional should have little or no bias of either type rather than succeeding for a limited subset of cases by cancellation of errors. We find that the widely used correlations of spin splittings to percentage of Hartree-Fock exchange are not borne out by the data, and the correlation functionals also play a significant role. We eventually conclude that SOGGA11-X, B1LYP, B3V5LYP, and MPW3LYP are the most consistently reliable functionals for balanced treatments of 4d transition metal atoms and their cations.
Journal of Chemical Theory and Computation | 2013
Sijie Luo; Donald G. Truhlar
When the spins of molecular orbitals are allowed to be aligned with different directions in space rather than being aligned collinearly, the resulting noncollinear spin orbitals add extra flexibility to variational optimization of the orbitals, and solutions obtained with collinear spin orbitals may be unstable with respect to becoming noncollinear in the expanded variational space. The goal of the present work is to explore whether and in what way the molecular orbitals of the Kohn-Sham density functional theory become noncollinear when fully optimized for multi-reference molecules, transition states, and reaction paths. (We note that a noncollinear determinant has intermediate flexibility between a collinear determinant and a linear combination of many collinear determinants with completely independent coefficients. However, the Kohn-Sham method is defined to involve the variational optimization of a single determinant, and a noncollinear determinant represents the limit of complete optimization in the Kohn-Sham scheme.) We compare the results obtained with the noncollinear Kohn-Sham (NKS) scheme to those obtained with the widely used unrestricted Kohn-Sham (UKS) scheme for two types of multi-reference systems. For the dissociation of the MnO and NiO transition metal oxides, we find UKS fails to dissociate to the ground states of neutral atoms, while NKS dissociates to the correct limit and predicts potential energy curves that vary smoothly at intermediate bond lengths. This is due to the instability of UKS solutions at large bond distances. For barrier heights of O3, BeH2, and H4, NKS is shown to stabilize the multi-reference transition states by expanding the variational space. Although the errors vary because they are closely coupled with the capability of the employed exchange-correlation functionals in treating the multi-configurational states, these findings demonstrate that results with collinear spin orbitals should be further scrutinized, and future development of exchange-correlation functionals for multi-reference systems should incorporate the flexibilities of NKS.
Journal of Physical Chemistry B | 2016
Bo Wang; Sijie Luo; Donald G. Truhlar
Theoretical studies on the electrode materials in lithium-ion batteries provide information on the structural changes during the charging and discharging processes. In the present study, we tested the M06-L and N12 exchange-correlation functionals on some well-studied lithium-containing materials. These functionals, which have already shown good performance for a variety of databases, outperform the widely used PBE functional for reproducing the experimental structures and averaged intercalation potentials. It is especially noteworthy that the M06-L functional gives voltages as accurate as those provided by the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional, but with less computational cost.
Journal of Physical Chemistry Letters | 2014
Sijie Luo; Collin J. Dibble; Michael A. Duncan; Donald G. Truhlar
We studied the Co4O4 subnanocluster and its MeCN-coated species using density functional theory, and we found that the Co4O4 core presents distinctive structures in bare and ligand-coated species. We propose a possible ligand-mediated ring → cube transformation mechanism during the ligand-coating process of the Co4O4 core due to the stronger binding energies of the MeCN ligands to the 3D distorted cube structure than to the 2D ring and ladder structures; theory indicates that three ligands are sufficient to stabilize the cube structure. Both ring and cube structures are ferromagnetic. Our finding is potentially useful for understanding the catalysis mechanism of Co4O4 species, which have important applications in solar energy conversion and water splitting; these catalysis reactions usually involve frequent addition and subtraction of various ligands and thus possibly involve core rearrangement processes similar to our findings.
Journal of Chemical Theory and Computation | 2014
Sijie Luo; Boris B. Averkiev; Ke R. Yang; Xuefei Xu; Donald G. Truhlar