Sijiu Liu
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sijiu Liu.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Xiao Yu; Jin Peng Sun; Yantao He; Xiaoling Guo; Sijiu Liu; Bo Zhou; Andy Hudmon; Zhong Yin Zhang
The lymphoid-specific tyrosine phosphatase (Lyp) has generated enormous interest because a single-nucleotide polymorphism in the gene (PTPN22) encoding Lyp produces a gain-of-function mutant phosphatase that is associated with several autoimmune diseases, including type I diabetes, rheumatoid arthritis, Graves disease, and systemic lupus erythematosus. Thus, Lyp represents a potential target for a broad spectrum of autoimmune disorders. Unfortunately, no Lyp inhibitor has been reported. In addition, little is known about the structure and biochemical mechanism that directly regulates Lyp function. Here, we report the identification of a bidentate salicylic acid-based Lyp inhibitor I-C11 with excellent cellular efficacy. Structural and mutational analyses indicate that the inhibitor binds both the active site and a nearby peripheral site unique to Lyp, thereby furnishing a solid foundation upon which inhibitors with therapeutic potency and selectivity can be developed. Moreover, a comparison of the apo- and inhibitor-bound Lyp structures reveals that the Lyp-specific region S35TKYKADK42, which harbors a PKC phosphorylation site, could adopt either a loop or helical conformation. We show that Lyp is phosphorylated exclusively at Ser-35 by PKC both in vitro and in vivo. We provide evidence that the status of Ser-35 phosphorylation may dictate the conformational state of the insert region and thus Lyp substrate recognition. We demonstrate that Ser-35 phosphorylation impairs Lyps ability to inactivate the Src family kinases and down-regulate T cell receptor signaling. Our data establish a mechanism by which PKC could attenuate the cellular function of Lyp, thereby augmenting T cell activation.
Journal of Medicinal Chemistry | 2010
Xian Zhang; Yantao He; Sijiu Liu; Zhi-Hong Yu; Zhong Xing Jiang; Zhenyun Yang; Yuanshu Dong; Sarah C. Nabinger; Li Wu; Andrea M. Gunawan; Lina Wang; Rebecca J. Chan; Zhong Yin Zhang
The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias, and solid tumors. Thus, there is considerable interest in SHP2 as a potential target for anticancer and antileukemia therapy. We report a salicylic acid based combinatorial library approach aimed at binding both active site and unique nearby subpockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anticancer and antileukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors.
Journal of the American Chemical Society | 2008
Sijiu Liu; Bo Zhou; Heyi Yang; Yantao He; Zhong Xing Jiang; Sanjai Kumar; Li Wu; Zhong Yin Zhang
Protein tyrosine phosphatases (PTPs) play key roles in the regulation of normal and pathological processes ranging from cell proliferation, differentiation, metabolism, and survival to many human diseases including cancer and diabetes. Functional studies of PTP can be greatly facilitated by small molecule probes that covalently label the active site of a PTP through an activity-dependent chemical reaction. In this article, we characterize phenyl vinyl sulfonate (PVSN) and phenyl vinyl sulfone (PVS) as a new class of mechanism-based PTP probes. PVSN and PVS inactivate a broad range of PTPs in a time- and concentration-dependent fashion. The PVSN- and PVS-mediated PTP inactivation is active site-directed and irreversible, resulting from a Michael addition of the active-site Cys Sgamma onto the terminal carbon of the vinyl group. Structural and mechanistic analyses reveal the molecular basis for the preference of PVSN/PVS toward the PTPs, which lies in the ability of PVSN and PVS to engage the conserved structural and catalytic machinery of the PTP active site. In contrast to early alpha-bromobenzyl phosphonate-based probes, PVSN and PVS are resistant to solvolysis and are cell-permeable and thus hold promise for in vivo applications. Collectively, these properties bode well for the development of aryl vinyl sulfonate/sulfone-based PTP probes to interrogate PTP activity in complex proteomes.
Journal of the American Chemical Society | 2008
Sijiu Liu; Li Fan Zeng; Li Wu; Xiao Yu; Ting Xue; Andrea M. Gunawan; Ya Qiu Long; Zhong Yin Zhang
There has been considerable interest in protein tyrosine phosphatase 1B (PTP1B) as a therapeutic target for diabetes, obesity, as well as cancer. Identifying inhibitory compounds with good bioavailability is a major challenge of drug discovery programs targeted toward PTPs. Most current PTP active site-directed pharmacophores are negatively charged pTyr mimetics which cannot readily enter the cell. This lack of cell permeability limits the utility of such compounds in signaling studies and further therapeutic development. We identify aryl diketoacids as novel pTyr surrogates and show that neutral amide-linked aryl diketoacid dimers also exhibit excellent PTP inhibitory activity. Kinetic studies establish that these aryl diketoacid derivatives act as noncompetitive inhibitors of PTP1B. Crystal structures of ligand-bound PTP1B reveal that both the aryl diketoacid and its dimeric derivative bind PTP1B at the active site, albeit with distinct modes of interaction, in the catalytically inactive, WPD loop open conformation. Furthermore, dimeric aryl diketoacids are cell permeable and enhance insulin signaling in hepatoma cells, suggesting that targeting the inactive conformation may provide a unique opportunity for creating active site-directed PTP1B inhibitors with improved pharmacological properties.
Journal of Biological Chemistry | 2006
Bo Zhou; Jialin Zhang; Sijiu Liu; Sharanya Reddy; Fang Wang; Zhong Yin Zhang
ERK2, a prototypic member of the MAPK family, plays a central role in regulating cell growth and differentiation. MKP3, an ERK2-specific phosphatase, terminates ERK2 signaling. To understand the molecular basis of ERK2 recognition by MKP3, we carried out hydrogen/deuterium exchange mass spectrometry experiments to map the interaction surfaces between the two proteins. The results show that the exquisite specificity of MKP3 for ERK2 is governed by two distinctive protein-protein interactions. To increase the “effective concentration” of the interacting molecules, the kinase interaction motif in MKP3 (64RRLQKGNLPVR74) and an MKP3-specific segment (101NSSDWNE107) bind the common docking site in ERK2 defined by residues in L16, L5, β7-β8, and αd-L8-αe, located opposite the kinase active site. In addition to this “tethering” effect, additional interactions between the 364FTAP367 sequence in MKP3 and the ERK2 substrate-binding site, formed by residues in the activation lip and the P+1 site (β9-αf loop), L13 (αf-αg loop), and the MAPK insert (L14-α1L14-α2L14), are essential for allosteric activation of MKP3 and formation of a productive complex whereby the MKP3 catalytic site is correctly juxtaposed to carry out the dephosphorylation of phospho-Thr183/phospho-Tyr185 in ERK2. This bipartite protein-protein interaction model may be applicable to the recognition of other MAPKs by their cognate regulators and substrates.
Journal of Biological Chemistry | 2013
Zhi Hong Yu; Jie Xu; Chad D. Walls; Lan Chen; Sheng Zhang; Ruo-Yu Zhang; Li Wu; Lina Wang; Sijiu Liu; Zhong Yin Zhang
Background: The mechanism by which SHP2 mutations cause LEOPARD syndrome is poorly understood. Results: LEOPARD syndrome mutations impair SHP2 activity but increase its propensity for an open and active conformation. Conclusion: LEOPARD syndrome SHP2 mutants bind preferentially to upstream activators to prolong substrate turnover, thus engendering gain-of-function phenotypes. Significance: The study provides a framework for understanding how individual SHP2 mutations cause diseases. SHP2 is an allosteric phosphatase essential for growth factor-mediated Ras activation. Germ-line mutations in SHP2 cause clinically similar LEOPARD and Noonan syndromes, two of several autosomal-dominant conditions characterized by gain-of-function mutations in the Ras pathway. Interestingly, Noonan syndrome SHP2 mutants are constitutively active, whereas LEOPARD syndrome SHP2 mutants exhibit reduced phosphatase activity. How do catalytically impaired LEOPARD syndrome mutants engender gain-of-function phenotypes? Our study reveals that LEOPARD syndrome mutations weaken the intramolecular interaction between the N-SH2 and phosphatase domains, leading to a change in SHP2 molecular switching mechanism. Consequently, LEOPARD syndrome SHP2 mutants bind upstream activators preferentially and are hypersensitive to growth factor stimulation. They also stay longer with scaffolding adapters, thus prolonging substrate turnover, which compensates for the reduced phosphatase activity. The study provides a solid framework for understanding how individual SHP2 mutations cause diseases.
Journal of Medicinal Chemistry | 2013
Yantao He; Sijiu Liu; Ambili Menon; Stephanie M. Stanford; Emmanuel Oppong; Andrea M. Gunawan; Li Wu; Dennis J. Wu; Amy M. Barrios; Nunzio Bottini; Andrew C. B. Cato; Zhong Yin Zhang
Lymphoid-specific tyrosine phosphatase (LYP), a member of the protein tyrosine phosphatase (PTP) family of signaling enzymes, is associated with a broad spectrum of autoimmune diseases. Herein we describe our structure-based lead optimization efforts within a 6-hydroxy-benzofuran-5-carboxylic acid series culminating in the identification of compound 8b, a potent and selective inhibitor of LYP with a K(i) value of 110 nM and more than 9-fold selectivity over a large panel of PTPs. The structure of LYP in complex with 8b was obtained by X-ray crystallography, providing detailed information about the molecular recognition of small-molecule ligands binding LYP. Importantly, compound 8b possesses highly efficacious cellular activity in both T- and mast cells and is capable of blocking anaphylaxis in mice. Discovery of 8b establishes a starting point for the development of clinically useful LYP inhibitors for treating a wide range of autoimmune disorders.
Journal of the American Chemical Society | 2012
Sheng Zhang; Sijiu Liu; Rongya Tao; Dan Wei; Lan Chen; Weihua Shen; Zhi Hong Yu; Lina Wang; David R. Jones; Xiaocheng C. Dong; Zhong Yin Zhang
Protein tyrosine phosphatases (PTPs) constitute a large family of signaling enzymes that control the cellular levels of protein tyrosine phosphorylation. A detailed understanding of PTP functions in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific, cell-permeable small-molecule agents. We present a stepwise focused library approach that transforms a weak and general non-hydrolyzable pTyr mimetic (F(2)Pmp, phosphonodifluoromethyl phenylalanine) into a highly potent and selective inhibitor of PTP-MEG2, an antagonist of hepatic insulin signaling. The crystal structures of the PTP-MEG2-inhibitor complexes provide direct evidence that potent and selective PTP inhibitors can be obtained by introducing molecular diversity into the F(2)Pmp scaffold to engage both the active site and unique nearby peripheral binding pockets. Importantly, the PTP-MEG2 inhibitor possesses highly efficacious cellular activity and is capable of augmenting insulin signaling and improving insulin sensitivity and glucose homeostasis in diet-induced obese mice. The results indicate that F(2)Pmp can be converted into highly potent and selective PTP inhibitory agents with excellent in vivo efficacy. Given the general nature of the approach, this strategy should be applicable to other members of the PTP superfamily.
Journal of Biological Chemistry | 2011
Yunpeng Bai; Yong Luo; Sijiu Liu; Lujuan Zhang; Kui Shen; Yuanshu Dong; Chad D. Walls; Lawrence A. Quilliam; Clark D. Wells; Youjia Cao; Zhong Yin Zhang
Background: The mechanism for the oncogenic phosphatase PRL-1 remains undefined. Results: We identified and characterized a novel PRL-1-binding protein, p115 RhoGAP. Conclusion: PRL-1 activates the ERK1/2 pathway by displacing MEKK1 from p115 RhoGAP and RhoA by preventing its interaction with p115 RhoGAP. Significance: This study offers a novel strategy for anticancer therapeutics by blocking the interaction between PRL-1 and p115 RhoGAP. Phosphatases of the regenerating liver (PRL) play oncogenic roles in cancer development and metastasis. Although previous studies indicate that PRL-1 promotes cell growth and migration by activating both the ERK1/2 and RhoA pathways, the mechanism by which it activates these signaling events remains unclear. We have identified a PRL-1-binding peptide (Peptide 1) that shares high sequence identity with a conserved motif in the Src homology 3 (SH3) domain of p115 Rho GTPase-activating protein (GAP). p115 RhoGAP directly binds PRL-1 in vitro and in cells via its SH3 domain. Structural analyses of the PRL-1·Peptide 1 complex revealed a novel protein-protein interaction whereby a sequence motif within the PxxP ligand-binding site of the p115 RhoGAP SH3 domain occupies a folded groove within PRL-1. This prevents the canonical interaction between the SH3 domain of p115 RhoGAP and MEKK1 and results in activation of ERK1/2. Furthermore, PRL-1 binding activates RhoA signaling by inhibiting the catalytic activity of p115 RhoGAP. The results demonstrate that PRL-1 binding to p115 RhoGAP provides a coordinated mechanism underlying ERK1/2 and RhoA activation.
Journal of the American Chemical Society | 2008
Mohannad Abdo; Sijiu Liu; Bo Zhou; Chad D. Walls; Li Wu; Spencer Knapp; Zhong Yin Zhang
A homotyrosine based seleninic acid irreversibly inhibits protein tyrosine phosphatases by forming a covalent selenosulfide linkage with the active site cysteine sulfhydryl specifically. The details of the event are revealed by model synthetic studies and by kinetic, mass spectrometric, and crystallographic characterization.