Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sijy O'Dell is active.

Publication


Featured researches published by Sijy O'Dell.


Journal of Virology | 2011

Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors

Mattia Bonsignori; Kwan-Ki Hwang; Xi Chen; Chun-Yen Tsao; Lynn Morris; Elin S. Gray; Dawn J. Marshall; John A. Crump; Saidi Kapiga; Noel E. Sam; Faruk Sinangil; Marie Pancera; Yang Yongping; Baoshan Zhang; Jiang Zhu; Peter D. Kwong; Sijy O'Dell; John R. Mascola; Lan Wu; Gary J. Nabel; Sanjay Phogat; Michael S. Seaman; John F. Whitesides; M. Anthony Moody; Garnett Kelsoe; Xinzhen Yang; Joseph Sodroski; George M. Shaw; David C. Montefiori; Thomas B. Kepler

ABSTRACT V2/V3 conformational epitope antibodies that broadly neutralize HIV-1 (PG9 and PG16) have been recently described. Since an elicitation of previously known broadly neutralizing antibodies has proven elusive, the induction of antibodies with such specificity is an important goal for HIV-1 vaccine development. A critical question is which immunogens and vaccine formulations might be used to trigger and drive the development of memory B cell precursors with V2/V3 conformational epitope specificity. In this paper we identified a clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer and inferred their common reverted unmutated ancestor (RUA) antibodies. While conformational epitope antibodies rarely bind recombinant Env monomers, a screen of 32 recombinant envelopes for binding to the CH01 to CH04 antibodies showed monoclonal antibody (MAb) binding to the E.A244 gp120 Env and to chronic Env AE.CM243; MAbs CH01 and CH02 also bound to transmitted/founder Env B.9021. CH01 to CH04 neutralized 38% to 49% of a panel of 91 HIV-1 tier 2 pseudoviruses, while the RUAs neutralized only 16% of HIV-1 isolates. Although the reverted unmutated ancestors showed restricted neutralizing activity, they retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. Thus, E.A244, B.9021, and AE.CM243 Envs are three potential immunogen candidates for studies aimed at defining strategies to induce V2/V3 conformational epitope-specific antibodies.


Science | 2009

Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120.

Lei Chen; Young Do Kwon; Tongqing Zhou; Xueling Wu; Sijy O'Dell; Lisa A. Cavacini; Ann J. Hessell; Marie Pancera; Min Tang; Ling Xu; Zhi Yong Yang; Mei Yun Zhang; James Arthos; Dennis R. Burton; Dimiter S. Dimitrov; Gary J. Nabel; Marshall R. Posner; Joseph Sodroski; Richard T. Wyatt; John R. Mascola; Peter D. Kwong

Anti-HIV Antibody Constraints Despite significant efforts, an effective vaccine against the HIV-1 virus remains elusive. A site on the HIV-1 gp120 envelope glycoprotein that binds to the CD4 receptor on host cells is vulnerable to antibody, but only rarely are antibodies against this site broadly neutralizing. L. Chen et al. (p. 1123) have determined crystal structures for two weakly neutralizing antibodies in complex with gp120. The epitopes recognized by these antibodies were similar to those bound by CD4 or a broadly neutralizing antibody. However, small differences in recognition induced conformational shifts in gp120 that were incompatible with formation of a functional viral spike. Thus, the antibody-vulnerable site on HIV-1 is protected by conformational constraints. Conformational variability in an HIV coat protein complicates the therapeutic targeting of HIV-1. The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4–binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.


Journal of Virology | 2009

Frequency and Phenotype of Human Immunodeficiency Virus Envelope-Specific B Cells from Patients with Broadly Cross-Neutralizing Antibodies

Nicole A. Doria-Rose; Rachel M. Klein; Maura Manion; Sijy O'Dell; Adhuna Phogat; Bimal K. Chakrabarti; Claire W. Hallahan; Stephen A. Migueles; Jens Wrammert; Rafi Ahmed; Martha Nason; Richard T. Wyatt; John R. Mascola; Mark Connors

ABSTRACT Induction of broadly cross-reactive neutralizing antibodies (NAb) is an important goal for a prophylactic human immunodeficiency virus type 1 (HIV-1) vaccine. Some HIV-infected patients make a NAb response that reacts with diverse strains of HIV-1, but most candidate vaccines have induced NAb only against a subset of highly sensitive isolates. To better understand the nature of broad NAb responses that arise during natural infection, we screened patients for sera able to neutralize diverse HIV strains and explored the frequency and phenotype of their peripheral Envelope-specific B cells. We screened 113 HIV-infected patients of various clinical statuses for the prevalence of broad NAb. Sera able to neutralize at least four of five viral isolates were found in over one-third of progressors and slow progressors, but much less frequently in aviremic long-term nonprogressors. Most Env-specific antibody-secreting B cells were CD27hi CD38hi plasmablasts, and the total plasmablast frequency was higher in HIV-infected patients than in uninfected donors. We found that 0.0031% of B cells and 0.047% of plasmablasts secreted Env-specific immunoglobulin G (IgG) in an enzyme-linked immunospot (ELISPOT) assay. We developed a novel staining protocol to label HIV-specific B cells with Env gp140 protein. A total of 0.09% of B cells were found to be Env-specific by this method, a frequency far higher than that indicated by ELISPOT assay. gp140-labeled B cells were predominantly CD27+ and surface IgG+. These data describe the breadth and titer of serum NAb and the frequency and phenotype of HIV-specific B cells in a cohort of patients with broad cross-neutralizing antibody responses that are potential goals for vaccines for HIV.


Journal of Virology | 2010

Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables

Nicole A. Doria-Rose; Rachel M. Klein; Marcus Daniels; Sijy O'Dell; Martha Nason; Alan S. Lapedes; Tanmoy Bhattacharya; Stephen A. Migueles; Richard T. Wyatt; Bette Korber; John R. Mascola; Mark Connors

ABSTRACT Induction of antibodies that neutralize a broad range of human immunodeficiency virus type 1 (HIV-1) isolates is a major goal of vaccine development. To study natural examples of broad neutralization, we analyzed sera from 103 HIV-1-infected subjects. Among progressor patients, 20% of sera neutralized more than 75% of a panel of 20 diverse viral isolates. Little activity was observed in sera from long-term nonprogressors (elite controllers). Breadth of neutralization was correlated with viral load, but not with CD4 count, history of past antiretroviral use, age, gender, race/ethnicity, or route of exposure. Clustering analysis of sera by a novel method identified a statistically robust subgrouping of sera that demonstrated broad and potent neutralization activity.


Journal of Virology | 2011

Mechanism of Neutralization by the Broadly Neutralizing HIV-1 Monoclonal Antibody VRC01

Yuxing Li; Sijy O'Dell; Laura M. Walker; Xueling Wu; Javier Guenaga; Yu Feng; Stephen D. Schmidt; Krisha McKee; Mark K. Louder; Julie E. Ledgerwood; Barney S. Graham; Barton F. Haynes; Dennis R. Burton; Richard T. Wyatt; John R. Mascola

ABSTRACT The structure of VRC01 in complex with the HIV-1 gp120 core reveals that this broadly neutralizing CD4 binding site (CD4bs) antibody partially mimics the interaction of the primary virus receptor, CD4, with gp120. Here, we extended the investigation of the VRC01-gp120 core interaction to the biologically relevant viral spike to better understand the mechanism of VRC01-mediated neutralization and to define viral elements associated with neutralization resistance. In contrast to the interaction of CD4 or the CD4bs monoclonal antibody (MAb) b12 with the HIV-1 envelope glycoprotein (Env), occlusion of the VRC01 epitope by quaternary constraints was not a major factor limiting neutralization. Mutagenesis studies indicated that VRC01 contacts within the gp120 loop D, the CD4 binding loop, and the V5 region were necessary for optimal VRC01 neutralization, as suggested by the crystal structure. In contrast to interactions with the soluble gp120 monomer, VRC01 interaction with the native viral spike did not occur in a CD4-like manner; VRC01 did not induce gp120 shedding from the Env spike or enhance gp41 membrane proximal external region (MPER)-directed antibody binding to the Env spike. Finally, VRC01 did not display significant reactivity with human antigens, boding well for potential in vivo applications. The data indicate that VRC01 interacts with gp120 in the context of the functional spike in a manner distinct from that of CD4. It achieves potent neutralization by precisely targeting the CD4bs without requiring alterations of Env spike configuration and by avoiding steric constraints imposed by the quaternary structure of the functional Env spike.


Nature Structural & Molecular Biology | 2015

Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env

Young Do Kwon; Marie Pancera; Priyamvada Acharya; Ivelin S. Georgiev; Emma T. Crooks; Jason Gorman; M. Gordon Joyce; Xiaochu Ma; Sandeep Narpala; Cinque Soto; Daniel S. Terry; Yongping Yang; Tongqing Zhou; Goran Ahlsen; Robert T. Bailer; Michael Chambers; Gwo Yu Chuang; Nicole A. Doria-Rose; Aliaksandr Druz; Mark A. Hallen; Adam Harned; Tatsiana Kirys; Mark K. Louder; Sijy O'Dell; Gilad Ofek; Keiko Osawa; Madhu Prabhakaran; Mallika Sastry; Guillaume Stewart-Jones; Jonathan Stuckey

As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.


Journal of Virology | 2014

Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody In Vitro Improves Protection against Lentiviral Infection In Vivo

Rebecca S. Rudicell; Young Do Kwon; Sung Youl Ko; Amarendra Pegu; Mark K. Louder; Ivelin S. Georgiev; Xueling Wu; Jiang Zhu; Jeffrey C. Boyington; Xuejun Chen; Wei Shi; Zhi Yong Yang; Nicole A. Doria-Rose; Krisha McKee; Sijy O'Dell; Stephen D. Schmidt; Gwo Yu Chuang; Aliaksandr Druz; Cinque Soto; Yongping Yang; Baoshan Zhang; Tongqing Zhou; John Paul Todd; Krissey E. Lloyd; Joshua Eudailey; Kyle E. Roberts; Bruce Randall Donald; Robert T. Bailer; Julie E. Ledgerwood; James C. Mullikin

ABSTRACT Over the past 5 years, a new generation of highly potent and broadly neutralizing HIV-1 antibodies has been identified. These antibodies can protect against lentiviral infection in nonhuman primates (NHPs), suggesting that passive antibody transfer would prevent HIV-1 transmission in humans. To increase the protective efficacy of such monoclonal antibodies, we employed next-generation sequencing, computational bioinformatics, and structure-guided design to enhance the neutralization potency and breadth of VRC01, an antibody that targets the CD4 binding site of the HIV-1 envelope. One variant, VRC07-523, was 5- to 8-fold more potent than VRC01, neutralized 96% of viruses tested, and displayed minimal autoreactivity. To compare its protective efficacy to that of VRC01 in vivo, we performed a series of simian-human immunodeficiency virus (SHIV) challenge experiments in nonhuman primates and calculated the doses of VRC07-523 and VRC01 that provide 50% protection (EC50). VRC07-523 prevented infection in NHPs at a 5-fold lower concentration than VRC01. These results suggest that increased neutralization potency in vitro correlates with improved protection against infection in vivo, documenting the improved functional efficacy of VRC07-523 and its potential clinical relevance for protecting against HIV-1 infection in humans. IMPORTANCE In the absence of an effective HIV-1 vaccine, alternative strategies are needed to block HIV-1 transmission. Direct administration of HIV-1-neutralizing antibodies may be able to prevent HIV-1 infections in humans. This approach could be especially useful in individuals at high risk for contracting HIV-1 and could be used together with antiretroviral drugs to prevent infection. To optimize the chance of success, such antibodies can be modified to improve their potency, breadth, and in vivo half-life. Here, knowledge of the structure of a potent neutralizing antibody, VRC01, that targets the CD4-binding site of the HIV-1 envelope protein was used to engineer a next-generation antibody with 5- to 8-fold increased potency in vitro. When administered to nonhuman primates, this antibody conferred protection at a 5-fold lower concentration than the original antibody. Our studies demonstrate an important correlation between in vitro assays used to evaluate the therapeutic potential of antibodies and their in vivo effectiveness.


Journal of Virology | 2009

Mechanism of Human Immunodeficiency Virus Type 1 Resistance to Monoclonal Antibody b12 That Effectively Targets the Site of CD4 Attachment

Xueling Wu; Tongqing Zhou; Sijy O'Dell; Richard T. Wyatt; Peter D. Kwong; John R. Mascola

ABSTRACT The region of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 that engages its primary cellular receptor CD4 forms a site of vulnerability to neutralizing antibodies. The monoclonal antibody b12 exploits the conservation and accessibility of the CD4-binding site to neutralize many, though not all, HIV-1 isolates. To understand the basis of viral resistance to b12, we used the atomic-level definition of b12-gp120 contact sites to study a panel of diverse circulating viruses. A combination of sequence analysis, computational modeling, and site-directed mutagenesis was used to determine the influence of amino acid variants on binding and neutralization by b12. We found that several substitutions within the dominant b12 contact surface, called the CD4-binding loop, mediated b12 resistance, and that these substitutions resided just proximal to the known CD4 contact surface. Hence, viruses varied in key b12 contact residues that are proximal to, but not part of, the CD4 contact surface. This explained how viral isolates were able to evade b12 neutralization while maintaining functional binding to CD4. In addition, some viruses were resistant to b12 despite minimal sequence variation at b12 contact sites. Such neutralization resistance usually could be reversed by alterations at residues thought to influence the quaternary configuration of the viral envelope spike. To design immunogens that elicit neutralizing antibodies directed to the CD4-binding site, researchers need to address the antigenic variation within this region of gp120 and the restricted access to the CD4-binding site imposed by the native configuration of the trimeric viral envelope spike.


Clinical and Experimental Immunology | 2015

Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults

Julie E. Ledgerwood; Emily E. Coates; Galina Yamshchikov; Jamie G. Saunders; LaSonji A. Holman; Mary E. Enama; Adam DeZure; Rebecca M. Lynch; Ingelise J. Gordon; Sarah A. Plummer; Cynthia S. Hendel; Amarendra Pegu; Michelle Conan-Cibotti; Sandra Sitar; Robert T. Bailer; Sandeep Narpala; Adrian B. McDermott; Mark K. Louder; Sijy O'Dell; Sarumathi Mohan; Janardan P. Pandey; Richard M. Schwartz; Zonghui Hu; Richard A. Koup; Edmund V. Capparelli; John R. Mascola; Barney S. Graham

VRC‐HIVMAB060‐00‐AB (VRC01) is a broadly neutralizing HIV‐1 monoclonal antibody (mAb) isolated from the B cells of an HIV‐infected patient. It is directed against the HIV‐1 CD4 binding site and is capable of potently neutralizing the majority of diverse HIV‐1 strains. This Phase I dose‐escalation study in healthy adults was conducted at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Primary objectives were the safety, tolerability and pharmacokinetics (PK) of VRC01 intravenous (i.v.) infusion at 5, 20 or 40 mg/kg, given either once (20 mg/kg) or twice 28 days apart (all doses), and of subcutaneous (s.c.) delivery at 5 mg/kg compared to s.c. placebo given twice, 28 days apart. Cumulatively, 28 subjects received 43 VRC01 and nine received placebo administrations. There were no serious adverse events or dose‐limiting toxicities. Mean 28‐day serum trough concentrations after the first infusion were 35 and 57 μg/ml for groups infused with 20 mg/kg (n = 8) and 40 mg/kg (n = 5) doses, respectively. Mean 28‐day trough concentrations after the second infusion were 56 and 89 μg/ml for the same two doses. Over the 5–40 mg/kg i.v. dose range (n = 18), the clearance was 0·016 l/h and terminal half‐life was 15 days. After infusion VRC01 retained expected neutralizing activity in serum, and anti‐VRC01 antibody responses were not detected. The human monoclonal antibody (mAb) VRC01 was well tolerated when delivered i.v. or s.c. The mAb demonstrated expected half‐life and pharmacokinetics for a human immunoglobulin G. The safety and PK results support and inform VRC01 dosing schedules for planning HIV‐1 prevention efficacy studies.


Journal of Experimental Medicine | 2010

Soluble HIV-1 Env trimers in adjuvant elicit potent and diverse functional B cell responses in primates

Christopher Sundling; Mattias N. E. Forsell; Sijy O'Dell; Yu Feng; Bimal K. Chakrabarti; Srinivas S. Rao; Karin Loré; John R. Mascola; Richard T. Wyatt; Iyadh Douagi; Gunilla B. Karlsson Hedestam

Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoproteins (Envs) have proven difficult to elicit by immunization. Therefore, to identify effective Env neutralization targets, efforts are underway to define the specificities of bNAbs in chronically infected individuals. For a prophylactic vaccine, it is equally important to define the immunogenic properties of the heavily glycosylated Env in healthy primates devoid of confounding HIV-induced pathogenic factors. We used rhesus macaques to investigate the magnitude and kinetics of B cell responses stimulated by Env trimers in adjuvant. Robust Env-specific memory B cell responses and high titers of circulating antibodies developed after trimer inoculation. Subsequent immunizations resulted in significant expansion of Env-specific IgG-producing plasma cell populations and circulating Abs that displayed increasing avidity and neutralization capacity. The neutralizing activity elicited with the regimen used was, in most aspects, superior to that elicited by a regimen based on monomeric Env immunization in humans. Despite the potency and breadth of the trimer-elicited response, protection against heterologous rectal simian-HIV (SHIV) challenge was modest, illustrating the challenge of eliciting sufficient titers of cross-reactive protective NAbs in mucosal sites. These data provide important information for the design and evaluation of vaccines aimed at stimulating protective HIV-1 immune responses in humans.

Collaboration


Dive into the Sijy O'Dell's collaboration.

Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivelin S. Georgiev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Krisha McKee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mark K. Louder

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard T. Wyatt

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nicole A. Doria-Rose

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marie Pancera

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert T. Bailer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gwo-Yu Chuang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge