Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sikander Hayat is active.

Publication


Featured researches published by Sikander Hayat.


Bioinformatics | 2014

PconsFold: improved contact predictions improve protein models

Mirco Michel; Sikander Hayat; Marcin J. Skwark; Chris Sander; Debora S. Marks; Arne Elofsson

Motivation: Recently it has been shown that the quality of protein contact prediction from evolutionary information can be improved significantly if direct and indirect information is separated. Given sufficiently large protein families, the contact predictions contain sufficient information to predict the structure of many protein families. However, since the first studies contact prediction methods have improved. Here, we ask how much the final models are improved if improved contact predictions are used. Results: In a small benchmark of 15 proteins, we show that the TM-scores of top-ranked models are improved by on average 33% using PconsFold compared with the original version of EVfold. In a larger benchmark, we find that the quality is improved with 15–30% when using PconsC in comparison with earlier contact prediction methods. Further, using Rosetta instead of CNS does not significantly improve global model accuracy, but the chemistry of models generated with Rosetta is improved. Availability: PconsFold is a fully automated pipeline for ab initio protein structure prediction based on evolutionary information. PconsFold is based on PconsC contact prediction and uses the Rosetta folding protocol. Due to its modularity, the contact prediction tool can be easily exchanged. The source code of PconsFold is available on GitHub at https://www.github.com/ElofssonLab/pcons-fold under the MIT license. PconsC is available from http://c.pcons.net/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Bioinformatics | 2012

BOCTOPUS: Improved topology prediction of transmembrane β barrel proteins

Sikander Hayat; Arne Elofsson

MOTIVATION Transmembrane β barrel proteins (TMBs) are found in the outer membrane of Gram-negative bacteria, chloroplast and mitochondria. They play a major role in the translocation machinery, pore formation, membrane anchoring and ion exchange. TMBs are also promising targets for antimicrobial drugs and vaccines. Given the difficulty in membrane protein structure determination, computational methods to identify TMBs and predict the topology of TMBs are important. RESULTS Here, we present BOCTOPUS; an improved method for the topology prediction of TMBs by employing a combination of support vector machines (SVMs) and Hidden Markov Models (HMMs). The SVMs and HMMs account for local and global residue preferences, respectively. Based on a 10-fold cross-validation test, BOCTOPUS performs better than all existing methods, reaching a Q3 accuracy of 87%. Further, BOCTOPUS predicted the correct number of strands for 83% proteins in the dataset. BOCTOPUS might also help in reliable identification of TMBs by using it as an additional filter to methods specialized in this task. AVAILABILITY BOCTOPUS is freely available as a web server at: http://boctopus.cbr.su.se/. The datasets used for training and evaluations are also available from this site.


BMC Bioinformatics | 2007

Prediction of the burial status of transmembrane residues of helical membrane proteins

Yungki Park; Sikander Hayat; Volkhard Helms

BackgroundHelical membrane proteins (HMPs) play a crucial role in diverse cellular processes, yet it still remains extremely difficult to determine their structures by experimental techniques. Given this situation, it is highly desirable to develop sequence-based computational methods for predicting structural characteristics of HMPs.ResultsWe have developed TMX (TransMembrane eXposure), a novel method for predicting the burial status (i.e. buried in the protein structure vs. exposed to the membrane) of transmembrane (TM) residues of HMPs. TMX derives positional scores of TM residues based on their profiles and conservation indices. Then, a support vector classifier is used for predicting their burial status. Its prediction accuracy is 78.71% on a benchmark data set, representing considerable improvements over 68.67% and 71.06% of previously proposed methods. Importantly, unlike the previous methods, TMX automatically yields confidence scores for the predictions made. In addition, a feature selection incorporated in TMX reveals interesting insights into the structural organization of HMPs.ConclusionA novel computational method, TMX, has been developed for predicting the burial status of TM residues of HMPs. Its prediction accuracy is much higher than that of previously proposed methods. It will be useful in elucidating structural characteristics of HMPs as an inexpensive, auxiliary tool. A web server for TMX is established at http://service.bioinformatik.uni-saarland.de/tmx and freely available to academic users, along with the data set used.


Biochimica et Biophysica Acta | 2011

TMBHMM: A frequency profile based HMM for predicting the topology of transmembrane beta barrel proteins and the exposure status of transmembrane residues

Nitesh Kumar Singh; Aaron Goodman; Peter Walter; Volkhard Helms; Sikander Hayat

Transmembrane beta barrel (TMB) proteins are found in the outer membranes of bacteria, mitochondria and chloroplasts. TMBs are involved in a variety of functions such as mediating flux of metabolites and active transport of siderophores, enzymes and structural proteins, and in the translocation across or insertion into membranes. We present here TMBHMM, a computational method based on a hidden Markov model for predicting the structural topology of putative TMBs from sequence. In addition to predicting transmembrane strands, TMBHMM also predicts the exposure status (i.e., exposed to the membrane or hidden in the protein structure) of the residues in the transmembrane region, which is a novel feature of the TMBHMM method. Furthermore, TMBHMM can also predict the membrane residues that are not part of beta barrel forming strands. The training of the TMBHMM was performed on a non-redundant data set of 19 TMBs. The self-consistency test yielded Q(2) accuracy of 0.87, Q(3) accuracy of 0.83, Matthews correlation coefficient of 0.74 and SOV for beta strand of 0.95. In this self-consistency test the method predicted 83% of transmembrane residues with correct exposure status. On an unseen, non-redundant test data set of 10 proteins, the 2-state and 3-state TMBHMM prediction accuracies are around 73% and 72%, respectively, and are comparable to other methods from the literature. The TMBHMM web server takes an amino acid sequence or a multiple sequence alignment as an input and predicts the exposure status and the structural topology as output. The TMBHMM web server is available under the tmbhmm tab at: http://service.bioinformatik.uni-saarland.de/tmx-site/.


Bioinformatics | 2016

Inclusion of dyad-repeat pattern improves topology prediction of transmembrane β-barrel proteins

Sikander Hayat; Christoph Peters; Nanjiang Shu; Konstantinos D. Tsirigos; Arne Elofsson

UNLABELLED : Accurate topology prediction of transmembrane β-barrels is still an open question. Here, we present BOCTOPUS2, an improved topology prediction method for transmembrane β-barrels that can also identify the barrel domain, predict the topology and identify the orientation of residues in transmembrane β-strands. The major novelty of BOCTOPUS2 is the use of the dyad-repeat pattern of lipid and pore facing residues observed in transmembrane β-barrels. In a cross-validation test on a benchmark set of 42 proteins, BOCTOPUS2 predicts the correct topology in 69% of the proteins, an improvement of more than 10% over the best earlier method (BOCTOPUS) and in addition, it produces significantly fewer erroneous predictions on non-transmembrane β-barrel proteins. AVAILABILITY AND IMPLEMENTATION BOCTOPUS2 webserver along with full dataset and source code is available at http://boctopus.bioinfo.se/ CONTACT : [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Journal of Bioinformatics and Computational Biology | 2011

Prediction of the exposure status of transmembrane beta barrel residues from protein sequence.

Sikander Hayat; Peter Walter; Yungki Park; Volkhard Helms

We present BTMX (Beta barrel TransMembrane eXposure), a computational method to predict the exposure status (i.e. exposed to the bilayer or hidden in the protein structure) of transmembrane residues in transmembrane beta barrel proteins (TMBs). BTMX predicts the exposure status of known TM residues with an accuracy of 84.2% over 2,225 residues and provides a confidence score for all predictions. Predictions made are in concert with the fact that hydrophobic residues tend to be more exposed to the bilayer. The biological relevance of the input parameters is also discussed. The highest prediction accuracy is obtained when a sliding window comprising three residues with similar C(α)-C(β) vector orientations is employed. The prediction accuracy of the BTMX method on a separate unseen non-redundant test dataset is 78.1%. By employing out-pointing residues that are exposed to the bilayer, we have identified various physico-chemical properties that show statistically significant differences between the beta strands located at the oligomeric interfaces compared to the non-oligomeric strands. The BTMX web server generates colored, annotated snake-plots as part of the prediction results and is available under the BTMX tab at http://service.bioinformatik.uni-saarland.de/tmx-site/. Exposure status prediction of TMB residues may be useful in 3D structure prediction of TMBs.


bioRxiv | 2015

EVfold.org: Evolutionary Couplings and Protein 3D Structure Prediction

Robert L. Sheridan; Robert J. Fieldhouse; Sikander Hayat; Yichao Sun; Yevgeniy Antipin; Li Yang; Thomas A. Hopf; Debora S. Marks; Chris Sander

Recently developed maximum entropy methods infer evolutionary constraints on protein function and structure from the millions of protein sequences available in genomic databases. The EVfold web server (at EVfold.org) makes these methods available to predict functional and structural interactions in proteins. The key algorithmic development has been to disentangle direct and indirect residue-residue correlations in large multiple sequence alignments and derive direct residue-residue evolutionary couplings (EVcouplings or ECs). For proteins of unknown structure, distance constraints obtained from evolutionarily couplings between residue pairs are used to de novo predict all-atom 3D structures, often to good accuracy. Given sufficient sequence information in a protein family, this is a major advance toward solving the problem of computing the native 3D fold of proteins from sequence information alone. Availability EVfold server at http://evfold.org/ Contact [email protected] Abbreviations DI direct information EC evolutionary coupling EV evolutionary MSA multiple sequence alignment PLM pseudo-likelihood maximization PPV positive predictive value (number of true positives divided by the sum of true and false positives) TM-score template modeling score


Computational Biology and Chemistry | 2011

Research Article: Statistical analysis and exposure status classification of transmembrane beta barrel residues

Sikander Hayat; Yungki Park; Volkhard Helms

Several computational methods exist for the identification of transmembrane beta barrel proteins (TMBs) from sequence. Some of these methods also provide the transmembrane (TM) boundaries of the putative TMBs. The aim of this study is to (1) derive the propensities of the TM residues to be exposed to the lipid bilayer and (2) to predict the exposure status (i.e. exposed to the bilayer or hidden in protein structure) of TMB residues. Three novel propensity scales namely, BTMC, BTMI and HTMI were derived for the TMB residues at the hydrophobic core region of the outer membrane (OM), the lipid-water interface regions of the OM, and for the helical membrane proteins (HMPs) residues at the lipid-water interface regions of the inner membrane (IM), respectively. Separate propensity scales were derived for monomeric and functionally oligomeric TMBs. The derived propensities reflect differing physico-chemical properties of the respective membrane bilayer regions and were employed in a computational method for the prediction of the exposure status of TMB residues. Based on the these propensities, the conservation indices and the frequency profile of the residues, the transmembrane residues were classified into buried/exposed with an accuracy of 77.91% and 80.42% for the residues at the membrane core and the interface regions, respectively. The correlation of the derived scales with different physico-chemical properties obtained from the AAIndex database are also discussed. Knowledge about the residue propensities and burial status will be useful in annotating putative TMBs with unknown structure.


Hfsp Journal | 2008

Toward integration of in vivo molecular computing devices: successes and challenges.

Sikander Hayat; Thomas Hinze

The computing power unleashed by biomolecule based massively parallel computational units has been the focus of many interdisciplinary studies that couple state of the art ideas from mathematical logic, theoretical computer science, bioengineering, and nanotechnology to fulfill some computational task. The output can influence, for instance, release of a drug at a specific target, gene expression, cell population, or be a purely mathematical entity. Analysis of the results of several studies has led to the emergence of a general set of rules concerning the implementation and optimization of in vivo computational units. Taking two recent studies on in vivo computing as examples, we discuss the impact of mathematical modeling and simulation in the field of synthetic biology and on in vivo computing. The impact of the emergence of gene regulatory networks and the potential of proteins acting as “circuit wires” on the problem of interconnecting molecular computing device subunits is also highlighted.


Methods of Molecular Biology | 2013

Localization prediction and structure-based in silico analysis of bacterial proteins: with emphasis on outer membrane proteins.

Kenichiro Imai; Sikander Hayat; Noriyuki Sakiyama; Naoya Fujita; Kentaro Tomii; Arne Elofsson; Paul Horton

In this chapter, we first discuss protein localization in bacteria and evaluate some localization prediction tools on an independent dataset. Next, we focus on β-barrel outer membrane proteins (BOMPs), describing and evaluating new tools for BOMP detection and topology prediction. Finally, we apply general protein structure prediction methods on these proteins to show that the structure of most BOMPs in E. coli can be modeled reliably.

Collaboration


Dive into the Sikander Hayat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenichiro Imai

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge