Silas Anselm Rasmussen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silas Anselm Rasmussen.
Journal of Natural Products | 2016
Silas Anselm Rasmussen; Sebastian Meier; Nikolaj Gedsted Andersen; Hannah Eva Blossom; Jens Ø. Duus; Kristian Fog Nielsen; Per Juel Hansen; Thomas Ostenfeld Larsen
Blooms of the microalga Prymnesium parvum cause devastating fish kills worldwide, which are suspected to be caused by the supersized ladder-frame polyether toxins prymnesin-1 and -2. These toxins have, however, only been detected from P. parvum in rare cases since they were originally described two decades ago. Here, we report the isolation and characterization of a novel B-type prymnesin, based on extensive analysis of 2D- and 3D-NMR data of natural as well as 90% (13)C enriched material. B-type prymnesins lack a complete 1,6-dioxadecalin core unit, which is replaced by a short acyclic C2 linkage compared to the structure of the original prymnesins. Comparison of the bioactivity of prymnesin-2 with prymnesin-B1 in an RTgill-W1 cell line assay identified both compounds as toxic in the low nanomolar range. Chemical investigations by liquid chromatography high-resolution mass spectrometry (LC-HRMS) of 10 strains of P. parvum collected worldwide showed that only one strain produced the original prymnesin-1 and -2, whereas four strains produced the novel B-type prymnesin. In total 13 further prymnesin analogues differing in their core backbone and chlorination and glycosylation patterns could be tentatively detected by LC-MS/HRMS, including a likely C-type prymnesin in five strains. Altogether, our work indicates that evolution of prymnesins has yielded a diverse family of fish-killing toxins that occurs around the globe and has significant ecological and economic impact.
Journal of Natural Products | 2016
Silas Anselm Rasmussen; Aaron John Christian Andersen; Nikolaj Gedsted Andersen; Kristian Fog Nielsen; Per Juel Hansen; Thomas Ostenfeld Larsen
Microalgae, particularly those from the lineage Dinoflagellata, are very well-known for their ability to produce phycotoxins that may accumulate in the marine food chain and eventually cause poisoning in humans. This includes toxins accumulating in shellfish, such as saxitoxin, okadaic acid, yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds that are toxic to fish, the so-called ichthyotoxins. Despite numerous reports of algal blooms causing massive fish kills worldwide, only a few types of compounds, such as the karlotoxins, have been proven to be true ichthyotoxins. This review will highlight marine microalgae as the source of some of the most complex natural compounds known to mankind, with chemical structures that show no resemblance to what has been characterized from plants, fungi, or bacteria. In addition, it will summarize algal species known to be related to fish-killing blooms, but from which ichthyotoxins are yet to be characterized.
Scientific Reports | 2016
Rasmus John Normand Frandsen; Silas Anselm Rasmussen; Peter Boldsen Knudsen; Silvio Uhlig; Dirk Petersen; Erik Lysøe; Charlotte Held Gotfredsen; Henriette Giese; Thomas Ostenfeld Larsen
Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/− 1.9 μM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies.
Insect Biochemistry and Molecular Biology | 2018
Silas Anselm Rasmussen; Kenneth T. Kongstad; Paiman Khorsand-Jamal; Rubini Kannangara; Majse Nafisi; Alex Van Dam; Mads Bennedsen; Bjørn Madsen; Finn Thyge Okkels; Charlotte Held Gotfredsen; Dan Staerk; Ulf Thrane; Uffe Hasbro Mortensen; Thomas Ostenfeld Larsen; Rasmus John Normand Frandsen
The chemical composition of the scale insect Dactylopius coccus was analyzed with the aim to discover new possible intermediates in the biosynthesis of carminic acid. UPLC-DAD/HRMS analyses of fresh and dried insects resulted in the identification of three novel carminic acid analogues and the verification of several previously described intermediates. Structural elucidation revealed that the three novel compounds were desoxyerythrolaccin-O-glucosyl (DE-O-Glcp), 5,6-didehydroxyerythrolaccin 3-O-β-D-glucopyranoside (DDE-3-O-Glcp), and flavokermesic acid anthrone (FKA). The finding of FKA in D. coccus provides solid evidence of a polyketide, rather than a shikimate, origin of coccid pigments. Based on the newly identified compounds, we present a detailed biosynthetic scheme that accounts for the formation of carminic acid (CA) in D. coccus and all described coccid pigments which share a flavokermesic acid (FK) core. Detection of coccid pigment intermediates in members of the Planococcus (mealybugs) and Pseudaulacaspis genera shows that the ability to form these pigments is taxonomically more widely spread than previously documented. The shared core-FK-biosynthetic pathway and wider taxonomic distribution suggests a common evolutionary origin for the trait in all coccid dye producing insect species.
Environmental Microbiology Reports | 2018
Eva C. Sonnenschein; Christopher Phippen; Mikkel Bentzon-Tilia; Silas Anselm Rasmussen; Kristian Fog Nielsen; Lone Gram
The Roseobacter-group species Phaeobacter inhibens produces the antibacterial tropodithietic acid (TDA) and the algaecidal roseobacticides with both compound classes sharing part of the same biosynthetic pathway. The purpose of this study was to investigate the production of roseobacticides more broadly in TDA-producing roseobacters and to compare the effect of producers and non-producers on microalgae. Of 33 roseobacters analyzed, roseobacticide production was a unique feature of TDA-producing P. inhibens, P. gallaeciensis and P. piscinae strains. One TDA-producing Phaeobacter, 27-4, did not produce roseobacticides, possibly due to a transposable element. TDA-producing Ruegeria and Pseudovibrio did not produce roseobacticides. Addition of roseobacticide-containing bacterial extracts affected the growth of the microalgae Rhodomonas salina, Thalassiosira pseudonana and Emiliania huxleyi, while growth of Tetraselmis suecica was unaffected. During co-cultivation, growth of E. huxleyi was initially stimulated by the roseobacticide producer DSM 17395, while the subsequent decline in algal cell numbers during senescence was enhanced. Strain 27-4 that does not produce roseobacticides had no effect on algal growth. Both bacterial strains, DSM 17395 and 27-4, grew during co-cultivation presumably utilizing algal exudates. Furthermore, TDA-producing roseobacters have potential as probiotics in marine larviculture and it is promising that the live feed Tetraselmis was unaffected by roseobacticides-containing extracts.
Nature Communications | 2017
Rubini Kannangara; Lina Siukstaite; Jonas Borch-Jensen; Bjørn Madsen; Kenneth T. Kongstad; Dan Staerk; Mads Bennedsen; Finn Thyge Okkels; Silas Anselm Rasmussen; Thomas Ostenfeld Larsen; Rasmus John Normand Frandsen; Birger Lindberg Møller
Carminic acid, a glucosylated anthraquinone found in scale insects like Dactylopius coccus, has since ancient times been used as a red colorant in various applications. Here we show that a membrane-bound C-glucosyltransferase, isolated from D. coccus and designated DcUGT2, catalyzes the glucosylation of flavokermesic acid and kermesic acid into their respective C-glucosides dcII and carminic acid. DcUGT2 is predicted to be a type I integral endoplasmic reticulum (ER) membrane protein, containing a cleavable N-terminal signal peptide and a C-terminal transmembrane helix that anchors the protein to the ER, followed by a short cytoplasmic tail. DcUGT2 is found to be heavily glycosylated. Truncated DcUGT2 proteins synthesized in yeast indicate the presence of an internal ER-targeting signal. The cleavable N-terminal signal peptide is shown to be essential for the activity of DcUGT2, whereas the transmembrane helix/cytoplasmic domains, although important, are not crucial for its catalytic function.Carminic acid is a widely applied red colorant that is still harvested from insects because its biosynthesis is not fully understood. Here, the authors identify and characterize a membrane-bound C-glucosyltransferase catalyzing the final step during carminic acid biosynthesis.
Marine Drugs | 2017
Aaron John Christian Andersen; Lívia Soman de Medeiros; Sofie Bjørnholt Binzer; Silas Anselm Rasmussen; Per Juel Hansen; Kristian Fog Nielsen; Kevin Jørgensen; Thomas Ostenfeld Larsen
Being able to quantify ichthyotoxic metabolites from microalgae allows for the determination of ecologically-relevant concentrations that can be simulated in laboratory experiments, as well as to investigate bioaccumulation and degradation. Here, the ichthyotoxin karmitoxin, produced by Karlodinium armiger, was quantified in laboratory-grown cultures using high-performance liquid chromatography (HPLC) coupled to electrospray ionisation high-resolution time-of-flight mass spectrometry (HRMS). Prior to the quantification of karmitoxin, a standard of karmitoxin was purified from K. armiger cultures (80 L). The standard was quantified by fluorescent derivatisation using Waters AccQ-Fluor reagent and derivatised fumonisin B1 and fumonisin B2 as standards, as each contain a primary amine. Various sample preparation methods for whole culture samples were assessed, including six different solid phase extraction substrates. During analysis of culture samples, MS source conditions were monitored with chloramphenicol and valinomycin as external standards over prolonged injection sequences (>12 h) and karmitoxin concentrations were determined using the response factor of a closely eluting iturin A2 internal standard. Using this method the limit of quantification was 0.11 μg·mL−1, and the limit of detection was found to be 0.03 μg·mL−1. Matrix effects were determined with the use of K. armiger cultures grown with 13C-labelled bicarbonate as the primary carbon source.
bioRxiv | 2018
Eva C. Sonnenschein; Christopher Phippen; Mikkel Bentzon-Tilia; Silas Anselm Rasmussen; Kristian Fog Nielsen; Lone Gram
The Roseobacter-group species Phaeobacter inhibens produces the antibacterial tropodithietic acid (TDA) and the algaecidal roseobacticides with both compound classes sharing part of the same biosynthetic pathway. The purpose of this study was to investigate the production of roseobacticides more broadly in TDA-producing roseobacters and to compare the effect of producers and non-producers on microalgae. Of 33 roseobacters analyzed, roseobacticide production was a unique feature of TDA-producing P. inhibens, P. gallaeciensis and P. piscinae strains. One TDA-producing Phaeobacter strain, 27-4, was unable to produce roseobacticides, possibly due to a transposable element. TDA-producing Ruegeria mobilis and Pseudovibrio did not produce roseobacticides. Addition of roseobacticide-containing bacterial extracts affected the growth of the microalgae Rhodomonas salina, Thalassiosira pseudonana and Emiliania huxleyi, while growth of Tetraselmis suecica was unaffected. During co-cultivation, growth of E. huxleyi was initially stimulated by the roseobacticide producer DSM 17395, while the subsequent decline in algal cell numbers during senescence was enhanced. Strain 27-4 that does not produce roseobacticides had no effect on algal growth. Both bacterial strains, DSM 17395 and 27-4, grew during co-cultivation presumably utilizing algal exudates. Furthermore, TDA-producing roseobacters have potential as probiotics in marine larviculture and it is promising that the live feed Tetraselmis was unaffected by roseobacticides-containing extracts. Originality-significance statement Some Roseobacter-group bacteria produce the antibacterial compound tropodithetic acid (TDA) and have potential as probiotics in marine aquaculture. However, a few of these strains additionally produce algaecidal compounds, the roseobacticides, which would restrict their use in marine larviculture where algae are used as live feed for fish larvae. We herein found that roseobacticides are limited to TDA-producing Phaeobacter strains and were not biosynthesized by TDA-producers outside this genus. Roseobacticides affected several strains of microalgae, but not the chlorophyte that is used as live feed in the aquaculture industry. Thus, the application of Roseobacter strains as probiotics is not hampered. Furthermore, these results demonstrate how Roseobacter-group strains act as gardeners of microalgae and thereby would be involved in environmental processes on a larger scale.
Harmful Algae | 2014
Hannah Eva Blossom; Nikolaj Gedsted Andersen; Silas Anselm Rasmussen; Per Juel Hansen
Aquatic Toxicology | 2014
Hannah Eva Blossom; Silas Anselm Rasmussen; Nikolaj Gedsted Andersen; Thomas Ostenfeld Larsen; Kristian Fog Nielsen; Per Juel Hansen